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Úvod 
 

Tento učebný text je určený primárne pre študentov na katedre psychológie FF TU k predmetu 

Štatistika I. a II. a je nutným základom pre predmet Analýza psychologických dát. Uplatnenie 

možno nájde aj u iných študentov, ktorých zaujímajú základy práce v programe jamovi. Cieľom 

tejto publikácie je ponúknuť čitateľovi jednoduchý návod pre dôležité funkcie v programe 

jamovi ako aj oboznámenie so základnou deskriptívnou a bivariačnou inferenčnou štatistikou. 

Ukážeme si základnú prácu s programom jamovi, od inštalácie, orientáciu v užívateľskom 

prostredí, cez vloženie dát a ich základný manažment. Druhá časť tejto publikácie je venovaná 

deskriptívnej štatistike. Uvedieme si, čo to je a na čo je dobrá. Následne si priblížime inferenčnú 

štatistiku, testovanie hypotéz a základné analýzy zamerané na skúmanie súvisu medzi dvomi 

premennými. Cieľom publikácie nie je poskytnúť vyčerpávajúci výklad všetkého k tejto téme, 

no práve naopak, efektívnym spôsobom priblížiť to dôležité a používané. V prípade, že by ste 

mali záujem ísť ďalej a dozvedieť sa viac, odporúčam využiť internet a vyhľadať si odpovede 

na vaše otázky v nespočetnom množstve článkov a prednášok (najmä v anglickom jazyku). 

Prečo práve program jamovi? Analyzovať kvantitatívne výskumné dáta možno vo viacerých 

počítačových programoch. Niektoré z nich sú užívateľsky príjemné, no cenovo ťažko dostupné 

(napr. IBM SPSS). Niektoré sú zadarmo, no na druhú stranu pomerne zložité pre občasného (či 

jednorazového) používateľa, asi najznámejší je program R. V niektorých programoch sa spája 

príjemné s dostupným, ako napríklad PSPP, JASP a jamovi. Ak by ste mali záujem dozvedieť 

sa viac o práci v programe JASP, odporúčame pozrieť si aj učebnicu od Ballovej Mikuškovej 

(2021) alebo učebnicu od Hanáka (2016) pre program PSPP. Ako už názov tejto učebnice 

napovedá, budeme pracovať v počítačovom programe jamovi (The jamovi project, 2021). Tento 

program je voľne prístupný a zároveň užívateľsky príjemný. Má aj svoje nedostatky, teda 

občasné, drobné chybičky, no jeho autori na ňom stále pracujú a postupne zlepšujú a rozširujú 

funkcionalitu. 

Momentálne čítate druhé, aktualizované vydanie tejto učebnice. Ako autor som rád za všetku 

pozitívnu spätnú väzbu od študentov a kolegov. Prvé vydanie však malo drobné nedostatky, 

ktoré sú v tejto verzii upravené. Motiváciou k aktualizácii boli tiež zmeny v programe jamovi. 

Ako som spomínal, vývojári na ňom stále pracujú. Ide o zmeny vo výzore a funkcionalite 

a aktualizované vydanie učebnice tieto zmeny zahŕňa (platí pre jamovi verziu 2.6.44).  
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1. Kvantitatívny výskum v psychológii 
Kvantitatívny výskum, je metóda výskumu, ktorá je založená na meraní premenných 

prostredníctvom numerického systému. Merania sú ďalej analyzované prostredníctvom 

rôznych štatistických modelov alebo analýz s cieľom porozumieť, popísať a predikovať určitý 

fenomén (voľne podľa APA, n.d.). Už v názve tohto prístupu možno badať dva dôležité znaky 

– kvantum a kvantifikácia. Prvý pojem vyjadruje, že kvantitatívne výskumy sa spravidla 

uskutočňujú na desiatkach, stovkách či dokonca tisícoch účastníkov (Ilievová a kol., 2017). 

Druhý pojem je možno ešte dôležitejším pre pochopenie podstaty – skúmaný jav či fenomén 

meriame, t.j. určitým spôsobom ho kvantifikujeme. K takémuto, na číslach založenému 

prístupu, neoddeliteľne patrí štatistika.  

Podľa Fielda (2018) výskumný proces prebieha v štyroch fázach. V prvej fáze sa objaví záujem 

o určitú problematiku. Ako náš záujem vznikol je individuálne, no vedie nás k túžbe dozvedieť 

sa viac o tejto problematike. V tejto fáze si kladieme výskumnú otázku a venujeme sa podstate 

javu, identifikujeme dôležité spojitosti – naberáme poznatky z doterajších výskumov. V ďalšej 

fáze formulujeme na základe získaných poznatkov určitú teóriu, ktorou vysvetľujeme podstatu 

javu. Vďaka nej dokážeme sformulovať výskumný problém a z neho vyplývajúce ciele nášho 

výskumu a na základe nich si stanovujeme určité predpoklady o psychologickom jave, ktoré 

odborne nazývame hypotézy. Tie chceme otestovať, a preto v tretej fáze zbierame dáta.  

Zber dát je širokým pojmom, ktorého súčasťou je výber meraných premenných („Čo ideme 

merať?“) a ich operacionalizácia („Ako to ideme merať?“). Odpoveď na prvú otázku je daná 

povahou našich výskumných cieľov. Odpoveď na druhú otázku je zložitejšia. V rámci 

kvantitatívneho výskumu v psychológii meriame javy najčastejšie prostredníctvom 

psychodiagnostických metodík. Tie majú rôznu podobu – výkonové testy, postojové škály, 

osobnostné inventáre a podobne, no ich spoločným znakom je určitý číselný výsledok, s ktorým 

vieme následne pracovať. Hoci nejde o meranie ako také, meraním označujeme aj radenie do 

kategórií, napr. podľa pohlavia, vzdelania, rodinného stavu a pod. Dôležitým rozhodnutím pri 

zodpovedaní otázky, „Ako to ideme merať?“, je tiež výber výskumného dizajnu. 

Korelačný výskum je výskumný dizajn, v ktorom skúmame súvis dvoch alebo viacerých 

premenných. Podstatou je, že pri meraní nijakým spôsobom priamo nezasahujeme, resp. 

neovplyvňujeme sledované premenné – jednoducho odmeriame a analyzujeme. Výhodou 

takéhoto prístupu je jednoduchosť uskutočnenia a možnosť merania pri veľkom množstve 

respondentov. Nevýhodou je, že nevieme spoľahlivo tvrdiť o smere efektu či konštatovať vplyv 

– vieme len potvrdiť súvis (koreláciu) premenných. 

Experimentálny výskum je výskumný dizajn, v ktorom rovnako skúmame súvis premenných, 

no rozlišujeme závislú (cieľovú) premennú a skúmame, aký vplyv na ňu má nezávislá 

premenná, nazývaná aj prediktor. Pri tomto dizajne zasahujeme do výskumu a ovplyvňujeme 

mieru nezávislej premennej v snahe zistiť, či a aký efekt na závislú premennú má táto zmena 

(Walker, 2013). Pri experimentoch rozoznávame experimentálnu skupinu, pri ktorej bola 

uskutočnená zámerná zmena a kontrolnú skupinu, u ktorej nebol uskutočnený experimentálny 

zásah. 
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V rámci tretej fázy si musíme zodpovedať aj otázku „Na kom ideme merať?“. Pri tejto otázke 

je niekedy odpoveď skrytá priamo vo výskumnom probléme. Ak sa zaujímame o zvládanie 

záťaže u zamestnancov záchrannej služby, je nám pomerne zrejmé, že dáta budeme zbierať 

u záchranárov. Vo všeobecnosti vyberáme takzvanú cieľovú populáciu, ktorú definujeme ako 

súbor všetkých možných skúmaných objektov. Populácia je tvorená štatistickými jednotkami. 

V psychológii sú nimi jednotliví ľudia, t.j. jednotlivci. Pre účely overenia hypotéz z tejto 

populácie vyberáme len niektoré štatistické jednotky, čím nám vzniká výskumný výber (alebo 

súbor), teda podmnožinu populácie (Chajdiak a kol. 1994).   

Po tom, čo ukončíme zber dát, prichádza na rad posledná fáza výskumu – analýza dát 

a interpretácia výsledkov (Field, 2018). V tejto fáze využívame štatistické postupy pre analýzu 

dát. Výsledky analýzy ďalej interpretujeme, najmä s cieľom overiť platnosť nami stanovených 

hypotéz. Základmi analýzy psychologických dát sa venujeme v ďalších kapitolách.  
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2. Základy práce v programe jamovi 
Pre začatie práce v programe jamovi si tento program musíme nainštalovať. Program môžeme 

stiahnuť zadarmo na stránke https://www.jamovi.org/ pod záložkou products, kde zvolíme 

jamovi Desktop. Jamovi je možné stiahnuť v rôznych verziách. Na tomto programe jeho 

vývojári neustále pracujú (aspoň v čase písania tejto publikácie tomu tak bolo), a tak vám 

neviem povedať, ktorá verzia programu je aktuálne pre vás v ponuke. Program je však možné 

stiahnuť vo vydaní pre operačné systémy Windows 64-bitový, macOS, Linux a ChromeOS. 

V tejto publikácii používame operačný systém Windows, no zo skúsenosti je aj vydanie pre 

macOS užívateľsky totožné s tým pre Windows. Momentálne sú v ponuke dve verzie, jedna je 

stabilná (angl. solid), jedna je najnovšia (angl. current). Odporúčame vám zvoliť si stabilnú 

verziu, keďže tá si už prešla testovaním od užívateľov a prípadné chyby boli opravené. V tejto 

učebnici pracujeme s verziou 2.6.44.  

Program sme si stiahli na pevný disk počítača a nainštalovali. Po spustení začíname 

v základnom prostredí, ktoré je zobrazené v Obrázku 2.1.  

   

Obrázok 2.1: Základné rozhranie programu jamovi 2.6.44 

V hornej lište tohto rozhrania máme šesť možnosti: 

• tri vodorovné čiarky : cez túto možnosť sa dostaneme k ponuke vytvorenia nového 

dátového súboru (možnosť New); k možnosti otvorenia už rozpracovaného dátového 

súboru, v ktorom sme pracovali pred tým (možnosť Open); môžeme tiež importovať 

dátový súbor z iného programu (napr. tabuľku z tabuľkového procesora); nájdeme tu aj 

možnosť uložiť náš dátový súbor prostredníctvom možnosti Save alebo Save as, alebo 

možnosť exportovať dátový súbor pre iné programy (možnosť Export) 

• lišta pre náhľad premenných v dátovom súbore Variables : v tejto lište budú 

zobrazené premenné, ktoré sú v našom dátovom súbore. Možno vďaka tomu vidieť celý 

https://www.jamovi.org/
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zoznam a rýchlo otvoriť nastavenie atribútov premenných. K týmto nastaveniam sa 

možno dostať aj inou podobne rýchlou cestou, ktorú využívame v tejto učebnici. 

• lišta pre spracovanie dát Data : v tejto lište nájdeme možnosť vložiť, vystrihnúť, 

kopírovať hodnoty; možnosť vrátiť späť; možnosti nastavenia premenných (možnosť 

Setup); vypočítať nové premenné (možnosť Compute); transformovať hodnoty 

(možnosť Transform); pridať a odstrániť premenné alebo respondentov; nastaviť filtre 

– tieto úpravy dát priblížime v ďalších častiach práce 

• lišta je určená pre štatistickú analýzu dát Analyses : nájdeme tu možnosti pre 

exploráciu dát, zisťovanie vzťahov medzi premennými či rozdielov medzi skupinami 

a i. Týmto štatistickým analýzam sa budeme venovať samostatne v jednotlivých 

kapitolách. 

• lišta Edit  je určená pre úpravu výstupov analýz. Priamo vo výstupe v programe 

jamovi môžeme pridať popisy k výsledkom, upraviť formátovanie a pod. S touto kartou 

pracovať v tejto učebnici nebudeme, keďže výsledky neexportujeme a nezdieľame, no 

prepisujeme do našej práce. 

• zobrazenie alebo skrytie časti okna zobrazujúcej dáta  

• tri bodky pod sebou : kliknutím sa zobrazí kontextové okno v ktorom možno nastaviť 

priblíženie (Zoom), počet zobrazovaných desatinných miest, vzhľad grafov, jazykovú 

predvoľbu a nastavenie importu dát. V tejto časti je dôležité nastaviť počet desatinných 

miest. Štandardne sa mnohé číselné výsledky uvádzajú zaokrúhlené na 2 desatinné 

miesta, preto nastavíme Number format na „2 dp“ (dp – decimal points, teda desatinné 

miesta). Výnimkou je hodnota signifikancie, ktorá sa štandardne uvádza na 3 desatinné 

miesta, preto ponecháme p-value format nastavenie na „3 dp“.  

Na ľavej strane je možné vidieť tabuľku, ktorá má pomenované stĺpce a očíslované riadky. Toto 

je základ pre zapísanie hodnôt z nášho výskumu. Na pravej strane je možné vidieť logo 

programu, no tento priestor slúži pre zobrazenie výsledkov uskutočnených analýz. Prvým 

krokom na začiatok je vytvorenie dátového súboru. 

2.1 Dátový súbor 
Dátový súbor možno jednoducho vysvetliť ako súbor, ktorý obsahuje dáta. Táto definícia je 

síce tautológiou, no väčšinou je s úsmevom prijímaná u študentov. V základe dátový súbor 

pozostáva (ako iné tabuľky) z dvoch hlavných elementov, a to: 

• riadky: riadky v dátovom súbore vyjadrujú jednotlivé merania vo všeobecnosti. V rámci 

psychologického výskumu sú tieto merania najčastejšie jednotliví respondenti alebo 

participanti. Jednoducho povedané, čo riadok, to respondent/participant. 

• stĺpce: stĺpce v dátovom súbore vyjadrujú jednotlivé premenné. Ide o charakteristiky 

prvkov štatistického súboru. Premenná môže nadobúdať viacero hodnôt, pričom je 

stanovené, akým spôsobom sú tieto hodnoty priraďované (Hendl, 2006). 

V psychologickom výskume sa často zaujímame o rôzne socio-demografické 

charakteristiky, respondentom ponúkame položky psychodiagnostických metodík, 

ktoré potom ďalej spracovávame a prostredníctvom matematických operácií na základe 
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nich vytvárame nové charakteristiky (napr. priemerné skóre). Všetky tieto 

charakteristiky zastrešuje pojem premenná. 

Premenné sa medzi sebou líšia na základe ich úrovne merania. Halama, Špajdel a Žitný (2013) 

uvádzajú 4 úrovne merania: nominálnu, ordinálnu, intervalovú a pomerovú. Zároveň však 

dodávajú, že posledné dve kategórie sú pomenovávané spoločným názvom kardinálna 

premenná. V programe jamovi sú tieto dve úrovne pomenované ako kontinuálna úroveň 

merania. 

• Nominálna premenná, nominálna úroveň merania: ide o najnižšiu úroveň merania, 

kedy priradené číslo je len názvom pre určitý jav. Pri tejto úrovni merania s číslami 

nevieme robiť matematické operácie, ide len o pomenovanie. Príkladom môže byť 

spomenutá premenná pohlavie. V našom výskume sme sa respondentov pýtali, aké je 

ich pohlavie a mohli si vybrať jednu z dvoch možností – muž alebo žena. Pri prepise 

odpovedí respondentov môžeme odpoveď „muž“ číselne označiť ako 1 a odpoveď 

„žena“ ako 2, no aj naopak. Je dôležité, aby sme zvolený systém dodržali pri všetkých 

respondentoch. 

• Ordinálna premenná, ordinálna úroveň merania: pri tejto úrovni merania znovu 

prideľujeme čísla k určitému javu, avšak tieto javy majú určitú hierarchiu a vieme ich 

na základe niečoho usporiadať. Príkladom môže byť najvyššie dosiahnuté vzdelanie. 

Respondenti si mohli zvoliť z možností základné, stredoškolské bez maturity, 

stredoškolské s maturitou, vysokoškolské – 1. stupňa (Bc.), vysokoškolské – 2. stupňa 

(Mgr., Ing.), vysokoškolské – 3. stupňa (PhD., CsC). Pri tejto úrovni merania sú síce 

jednotlivé možnosti usporiadané od najnižšieho po najvyššie, no medzi jednotlivými 

možnosťami nie sú rovnaké vzdialenosti. Vieme, že respondent, ktorý ukončil 

vysokoškolské vzdelanie 2. stupňa, má vyššie dosiahnuté vzdelanie ako respondent, 

ktorý označil stredoškolské bez maturity, no vzdialenosť medzi jednotlivými 

možnosťami nie je rovnaká. Na tejto úrovni merania nevieme robiť matematické 

operácie s hodnotami. Napr. aký je rozdiel medzi niekým, kto ukončil vysokoškolské 

vzdelanie 2. stupňa (hodnota 5) a niekým kto ukončil strednú školu bez maturity 

(hodnota 2). Vieme, že 5-2=3, čiže by sme mohli povedať, že rozdiel je 3, čo v našom 

kódovaní znamená stredná škola s maturitou, a to nedáva zmysel. 

• Kontinuálna premenná, kontinuálna úroveň merania: ide o spoločný názov pre 

intervalovú a pomerovú premennú, tiež nazývanú ako kardinálna premenná. Tento typ 

premennej používame pre premenné, kde dané číslo môžeme chápať ako číslo. 

Príkladom môže byť vek, výška, váha, ale aj premenné ako hrubé alebo priemerné skóre 

dotazníka, počet správnych odpovedí v teste a iné.  

2.2 Vytvorenie dátového súboru 
Pred akoukoľvek ďalšou prácou je potrebné vytvoriť si dátový súbor. Ak ste zbierali dáta 

metódou papier-pero, môžete definovať premenné a vkladať dáta priamo v programe jamovi. 

Odporúčam vám však začať v programe Microsoft Excel alebo podobnom tabuľkovom 

procesore. Napriek mnohým výhodám programu jamovi, pomenovanie premenných 

a vkladanie dát je rýchlejšie v Exceli. Takto vytvorený dátový súbor sa potom dá veľmi 

jednoducho presunúť do jamovi. Tí z vás, ktorí ste zbierali dáta prostredníctvom online 
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platformy, už pravdepodobne máte tabuľku, ktorú si môžete stiahnuť a po úpravách ju vložiť 

do jamovi. 

2.2.1 Vytvorenie dátového súboru pri metóde papier-pero 

Pokiaľ ste dáta zbierali spôsobom papier-pero, čaká vás množstvo príjemných chvíľ 

prepisovania hodnôt z papierových formulárov do počítača. Berte do úvahy počet hodnôt, ktoré 

musíte zadať. Ak ste mali vo svojom výskume 100 položiek a získali ste odpovede od 200 

respondentov, budete musieť vložiť 20 tisíc hodnôt, a to zaberie nejaký čas.  

V prvom kroku si otvorte tabuľkový procesor (napr. Excel) a vytvorte premenné. Stačí, ak do 

prvého riadku vložíte názvy, ako by ste chceli, aby sa premenné nazývali. Hoci sme písali, že 

v riadkoch sa nachádzajú respondenti, v tomto prípade nám prvý riadok poslúži ako „hlavička“, 

v ktorej sú definované názvy premenných. Program jamovi z tohto prvého riadku vytvorí názvy 

premenných tak, aby sme ich nemuseli nastavovať ručne. Konkrétne názvy premenných sú už 

na vás a závisia na tom, aké položky ste zbierali. Ideálne je však nazvať premennú krátko, 

jednoslovne a výstižne, bez zbytočnej diakritiky alebo medzier, napríklad pohlavie, vek. 

V prípade položiek psychodiagnostických metodík je praktické použiť nejakú skratku 

vychádzajúcu z názvu metodiky a priradiť k nej číslo položky. V prípade prvej položky 

Inventára Veľkej Päťky (BFI-2), by sme mohli zvoliť názov BFI_1. Vo väčšine tabuľkových 

procesorov je možnosť automatického dopĺňania hodnôt. Táto funkcia vie značne urýchliť 

prácu. Do bunky zadáte skratku a číslo položky. Pravý spodný roh bunky má trochu hrubšie 

orámovanie, stačí kliknúť, potiahnuť v smere riadku a automaticky budú nastavené hodnoty. 

Za pár sekúnd tak viete pomenovať množstvo položiek (napr. BFI_1 až BFI_60).  

Po vytvorení názvov pre jednotlivé premenné v prvom riadku prichádza na rad vkladanie 

hodnôt do jednotlivých buniek. Všetko, čo vkladáte, dávajte v číselnom formáte. Vopred si 

stanovte, aké číselné hodnoty pridelíte jednotlivým kategóriám premenných. Príkladom môže 

byť premenná pohlavie – zadefinujte si, akým číslom budú označení muži a akým ženy (napr. 

muž – 1, žena – 2). Pri nominálnych premenných je to na vás, no pri ordinálnych premenných 

(t.j. usporiadaných kategóriách) je dôležité, aby čísla boli zoradené tak, ako sú zoradené 

kategórie. Napríklad: základné vzdelanie – 1, stredoškolské bez maturity – 2, stredoškolské 

s maturitou – 3, vysokoškolské I. stupňa – 4, vysokoškolské II. stupňa – 5, vysokoškolské III. 

stupňa – 6.  

2.2.2 Vytvorenie dátového súboru pri online zbere dát 

Po ukončení online zberu vám väčšina platforiem umožní stiahnuť si súbor, ktorý otvoríte 

v tabuľkovom procesore. V prípade platformy Google Forms si môžete stiahnuť tabuľku Excel. 

Táto bude mať v každom stĺpci jednotlivé premenné. Prvý riadok tabuľky nesie názvy 

premenných – tie však majú znenie podľa toho, čo ste zadali pri tej ktorej položke online 

formulára. Odporúčam si tieto názvy premenovať spôsobom popísaným vyššie. 

Odpovede jednotlivých respondentov budú v číselnom alebo slovnom formáte. Pokiaľ ste sa 

pýtali na vek, pričom respondenti odpovedali zadaním čísla, môžete s týmito odpoveďami 

priamo pracovať. V prípade položiek, pri ktorých respondenti vyberali jednu z možností (napr. 

Likertova škála), budú odpovede zapísané v podobe znenia tej ktorej možnosti (napr. „Veľmi 

nesúhlasím“). Takéto textové odpovede je potrebné zmeniť na čísla. V prípade nominálnych 
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premenných to nie je nutné – jamovi v tomto prípade dokáže pracovať s textovou hodnotou, no 

pri ordinálnych premenných je potrebné, aby boli hodnoty číselné. Formát odpovedí 

v stiahnutých dátach však závisí od konkrétnej platformy využitej pre zber dát a nemožno 

jednoducho generalizovať na všetky platformy. 

Pokiaľ máme množstvo času a nič lepšie na práci, môžeme tieto hodnoty zameniť ručne, 

hodnotu po hodnote. Našťastie existujú možnosti automatického zamenenia hodnôt. 

V tabuľkovom procesore nájdite funkciu „Hľadať a nahradiť“ alebo „Nahradiť“ (aspoň takto je 

to pomenované v Microsoft Excel, kde je možné využiť klávesovú skratku Ctrl + H či Cmd + 

H na Mac). Vďaka tejto funkcii vieme hľadať určitý výraz či reťazec a zameniť ho za iný. 

V základe hľadá a nahrádza v celom hárku, no môžete vybrať len konkrétne stĺpce (označením 

stĺpca, resp. stĺpcov podržaním Shift a/alebo Ctrl), v ktorých chcete zmenu uskutočniť. 

V prípade spomenutej Likertovej škály by sme mohli dať hľadať „Veľmi nesúhlasím“ 

a zameniť to za 1, zvolením možnosti Nahradiť všetky (prípadne inak nazvanej možnosti 

v závislosti od konkrétneho tabuľkového procesora). Pri takomto zamieňaní hodnôt 

odporúčame pracovať opatrne a po častiach (označte si len stĺpce, pri ktorých máte rovnaký 

spôsob nahradenia hodnôt). Môže sa stať, že niektoré z použitých metodík majú rovnaké 

možnosti, no ich číselná hodnota je odlišná, napr. v jednom dotazníku máte možnosť Súhlasím, 

ktorú je potrebné zameniť za 4, no v inom dotazníku to má byť 6. Pochybenie v tomto kroku 

spôsobí, že vaše ďalšie výsledky budú neplatné. Dávajte si pozor a odporúčame vytvárať si 

„pevné“ kópie súborov, aby ste v prípade veľkého problému mohli využiť záložný súbor 

a nestratili ste hodiny práce. 

2.3 Vloženie dátového súboru do jamovi a nastavenie premenných 
Keď už máte pripravený dátový súbor v tabuľkovom procesore, môžete dáta ľahko presunúť 

do programu jamovi. Uložte si dáta a otvorte program jamovi. V menu zvoľte možnosť Open, 

nájdite svoj súbor a dajte otvoriť. Ak ste všetko nastavili správne, mali by sa vám dáta načítať 

aj s pomenovaním jednotlivých premenných. Obrázok 2.2 zobrazuje vzhľad časti dát 

v tabuľkovom procesore (konkrétne Microsoft Excel) a v programe jamovi po presune dát. 

Môžete si všimnúť, že pomenovania v prvom riadku sa stali pomenovaním premenných. Hneď, 

ako prenesiete dáta do programu jamovi, si tento súbor uložte (v menu zvoľte možnosť Save 

a nastavte, kde a pod akým názvom ho uložiť). 
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Obrázok 2.2: Dáta v tabuľkovom procesore a v programe jamovi 

Ďalej je potrebné nastaviť atribúty jednotlivých premenných. Dvojklikom na názov premennej 

otvoríme nastavenie atribútov tejto premennej (obrázok  2.3).  

 

Obrázok 2.3: Základný vzhľad rozhrania pre nastavenie atribútov premennej 

V prvom okienku je názov premennej – ten máme nastavený už z tabuľky, ktorú sme vložili 

z tabuľkového procesoru, no v prípade potreby ho môžeme kedykoľvek zmeniť. V ďalšom 

okienku s názvom Description môžeme pridať vysvetľujúci popis k premennej, napríklad aby 

ste rozumeli aj neskôr, čo daná premenná vyjadruje. Najdôležitejším atribútom, ktorý je 

potrebné nastaviť je Measure type – úroveň merania premennej. Na výber máme možnosť 

Nominal pre nominálne premenné, Ordinal pre ordinálne premenné a Continuous pre 

kontinuálne premenné (popis je v časti 2.1). Nastavenie úrovne merania je dôležité pre niektoré 

štatistické analýzy, ktorým sa budeme venovať v ďalších častiach učebnice. Nie je však 

potrebné nastavovať každú položku osobitne. V prípade, že máte viacero položiek, pri ktorých 

chcete zmeniť nastavenia, môžete tak spraviť hromadne. Otvorte si nastavenia prvej z položiek, 

ktorú chcete upraviť, podržte na klávesnici tlačidlo Shift a kliknite na poslednú z položiek 

v rade, ktorú chcete upraviť. Vyberiete tým daný počet stĺpcov a zmeny robíte pre všetky tieto 

vybrané položky. V prípade, že by ste chceli naraz nastaviť viacero položiek, ktoré nie sú v rade 

za sebou, môžete tak urobiť tým, že namiesto Shift podržíte tlačidlo Ctrl a klikáte na názvy 

položiek pokým nevyberiete všetky, o ktoré máte záujem. 

Ďalším nastavením je Data type, prostredníctvom ktorého môžeme nastaviť, o aké dáta ide. 

Zadávať môžeme celé čísla – možnosť Integer, napríklad hodnotu, ktorú respondent zvolil na 

Likertovej škále alebo vek. Takéto premenné nazývame diskrétne, pretože sú merané na úrovni 

celých čísiel. Opačným prípadom sú spojité premenné, pri ktorých sa môžu vyskytovať aj 

desatinné miesta (Decimal). Príkladom môže byť výška respondenta v metroch, napr. 1,76 

metra. Iným príkladom môže byť priemerné skóre zo škály alebo dotazníka, napr. priemerné 
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skóre extraverzie a pod. Poslednou možnosťou je Text, kedy neplánujeme zadávať číselné 

hodnoty, ale text. Túto možnosť môžeme použiť napríklad pri premennej pohlavie – nemusíme 

zadávať číslo, ale muž alebo žena. Ideálnejšie je však zmeniť všetky informácie na čísla, keďže 

tieto čísla vieme v prípade potreby pomenovať. Toto nastavenie premennej nie je vo väčšine 

prípadov potrebné vopred meniť, keďže program jamovi ho nastaví automaticky (no pre istotu 

odporúčame skontrolovať). Pod nastavením typu dát, máme možnosť zadať hodnoty, ktoré 

v našom súbore vyjadrujú chýbajúce hodnoty – Missing values. Samozrejme, pokiaľ 

respondent nezodpovedal niektorú otázku alebo položku, môžeme nechať prázdnu bunku. Váš 

výskum ste ale mohli mať nastavený tak, že pri 4-stupňovej Likertovej škále (1 až 4) ste mali 

aj možnosť „Nechcem odpovedať“, ktorú ste pri prepise označili hodnotou napr. 0 alebo 99. 

Aby program jamovi vedel, že uvedené číslo vyjadruje chýbajúci údaj, môžete to nastaviť 

v tomto menu, kliknutím na okienko, pričom sa vám otvorí nové okno, v ktorom kliknete na 

a nastavíte hodnotu, ktorá vyjadruje chýbajúci údaj.  

Praktickým pomocníkom je aj možnosť pomenovať jednotlivé číselné hodnoty pri nominálnych 

alebo ordinálnych premenných. V časti Levels nájdeme číselné hodnoty obsiahnuté vo vybranej 

premennej či vybraných premenných. Kliknutím na číselnú hodnotu ju môžeme pomenovať. 

„Na pozadí“ nám stále zostane číselná hodnota, no v dátach a výsledkoch analýz sa nám 

zobrazia pomenovania. Ukážku nájdete v obrázku 2.4. 

 

 

 

Obrázok 2.4: Ukážka nastaveného pomenovania hodnôt premennej 
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2.4 Transformácie hodnôt 
Vložené dáta sú v „surovom“ stave. Toto čudesné pomenovanie sa vyskytuje aj v anglickom 

jazyku tzv. „raw data“. Neznamená to, že ich je nutné tepelne upraviť (kreativite sa však medze 

nekladú), no dôležité je spraviť zopár úkonov, aby sme dáta dostali do stavu, kedy s nimi 

môžeme plne pracovať – hovoríme o transformácii dát či hodnôt. Čo to znamená? Ide o rôzne 

úpravy hodnôt, ktoré máme. Uvedieme dva príklady. Pravdepodobne najčastejšie využívaným 

je otočenie hodnôt premenných. Mnohé psychodiagnostické metodiky, najmä z oblasti 

sociálnej psychológie či psychológie osobnosti, využívajú takzvané reverzné položky. Ide o 

položky, ktoré sú významom opačné ako je meraný konštrukt. Napríklad, v prípade 

osobnostného dotazníka BFI-2 je polovica položiek formulovaná v smere meraného konštruktu 

a druhá polovica v opačnom smere. Konkrétne môžeme uviesť položku z domény Extraverzia: 

„Som niekto, kto je spoločenský, rád trávi čas s inými ľuďmi.“ Táto položka je určená pre 

meranie Sociability v rámci domény Extraverzia. Jej znenie je v smere meraného konštruktu, 

t.j. čím vyšší súhlas s touto položkou respondent vyjadrí, tým vyššiu mieru Sociability či 

celkovo Extraverzie by mal mať. No pre meranie tohto konštruktu v dotazníku BFI-2 nájdeme 

aj položku „Som niekto, kto je niekedy hanblivý, uzavretý.“ Zo znenia tejto položky vidíme, že 

je formulovaná v opačnom smere, to znamená, že čím vyšší súhlas s týmto tvrdením respondent 

vyjadrí, tým nižšiu mieru meraného konštruktu dosahuje. Čísla ale nepustia, t.j. pokiaľ sme pri 

prenose dát zamenili povedzme „Veľmi súhlasím“ za číselnú hodnotu 5, bude táto hodnota aj 

pri jednej aj pri druhej premennej. Z tohto dôvodu musíme otočiť hodnoty pri reverzných 

položkách vytvorením transformovaných premenných. 

Druhým príkladom je vytvorenie premenných, v ktorých sme niektoré kategórie zlúčili. 

Využívame ho najmä, ak sme dáta zbierali detailnejšie, no neskôr nemáme záujem o takúto 

detailnú informáciu a chceme hodnoty zlúčiť. Príkladom môže byť premenná, ktorá vyjadruje 

najvyššie dosiahnuté vzdelanie – respondenti mali určiť svoje najvyššie dosiahnuté vzdelanie 

výberom jednej z možností: 1) základné, 2) stredoškolské bez maturity, 3) stredoškolské 

s maturitou, 4) vysokoškolské I. stupňa, 5) vysokoškolské II. stupňa, 6) vysokoškolské III. 

stupňa. Pre ďalšie analýzy však nepotrebujeme špecificky vymedzenú možnosť 6) a chceme ju 

zlúčiť s možnosťou 5. Takúto transformáciu nemusí uskutočniť nutne v programe jamovi. 

Pokiaľ sa pre ňu rozhodneme ešte pred vložením dát do programu jamovi, vieme tento úkon 

jednoducho spraviť aj v tabuľkovom procesore – v tomto prípade by sme, „5) vysokoškolské 

II. stupňa“ aj „6) vysokoškolské III. stupňa“, nahradili tou istou číselnou hodnotou (napr. 5), 

čím by sme ich zlúčili.  

Transformáciu premenných môžeme v jamovi spraviť cez kartu Data zvolením možnosti 

Transform. Prvým krokom je označenie položiek, ktoré chceme transformovať tým istým 

spôsobom. Pri vašich dátach sa riaďte pokynmi, ktoré sú v manuáloch metodík, ktoré ste 

použili. V prípade spomínaného dotazníka BFI-2 zvolíme všetky položky, ktoré podľa manuálu 

treba otočiť (výber položiek spravíte tak, že klikáte na názvy premenných v hlavičke tabuľky, 

pričom držíte Ctrl či Cmd). Po tom, ako ste označili všetky položky, zvoľte možnosť Transform. 

V dátovom súbore vám automaticky vzniknú nové premenné, ktoré budú niesť transformované 

hodnoty a otvorí sa vám okno, v ktorom môžete nastaviť spôsob transformácie. Príklad 

zobrazujem v obrázku 2.5.  



 
 

18 

 

Obrázok 2.5: Okno pre nastavenie spôsobu transformácie 

Aby sme vytvorili nový spôsob transformácie, musíme otvoriť výberové okno (v základe je 

v ňom popis None) a vybrať možnosť Create New Transform... Otvorí sa nám nové okno, ktoré 

zobrazujeme v obrázku 2.6. Toto okno ponúka viaceré nastavenia. Jedným z nich je 

pomenovanie nastavenia transformácie (Transform 1). Toto pomenovanie môžete ľubovoľne 

zmeniť na také, aké vám vyhovuje. Vytvorený spôsob transformácie sa dá opakovane použiť aj 

na iné položky. V našom príklade chceme nastaviť transformáciu pre Likertovu škálu 

s rozsahom od 1 až 5. Pomenujeme si túto transformáciu ako Likert 1-5. Ďalšou možnosťou je 

nastavenie popisu pre transformáciu (Description). Ak máte záujem, môžete pridať popis, 

v našom prípade ho nastavovať nebudeme. Užitočným je nastavenie prípony (Variable suffix). 

Ak túto hodnotu nenastavíte, novovytvorené transformované premenné budú mať názov 

pozostávajúci z názvu pôvodnej premennej spolu s názvom transformácie (napr. bfi1 Likert 1-

5). Tento názov je zbytočne zložitý, a tak si môžete príponu nastaviť napr. na R ako rekódované 

a názov transformovanej premennej bude kratší. Najdôležitejšia je ale časť, kde nastavujeme 

spôsob transformácie. Tá môže byť jednoduchá ako pri otočení hodnôt alebo zložitejšia na 

základe logických výrazov tzv. podmieňovania. Posledným nastavením je Measure type, kde 

môžeme nastaviť, akú úroveň merania majú mať transformované položky. Pokiaľ nemáte 

záujem o konkrétne nastavenie, môžete ponechať automatické nastavenie, teda možnosť Auto.    

 

Obrázok 2.6 Okno pre nastavenie transformácie premenných 

Ak máme záujem o otočenie hodnôt, musíme vytvoriť vzorec, ktorý tieto hodnoty otočí. 

V prípade, že premenná, ktorú chceme otočiť, začína na hodnote 1 (napr. 5 bodová Likertova 

škála od 1 do 5), použijeme vzorec, kde k maximálnej hodnote škály pripočítame 1 a odčítame 

hodnotu zdrojovej (surovej) premennej. Hodnota surovej premennej, resp. originálnej hodnoty, 
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ktorú chceme transformovať je v jamovi označená ako $source. V prípade, že máme škálu 

v rozmedzí od 1 do 5, vzorec bude vyzerať takto 6 - $source – to znamená, že ak niekto 

odpovedal 5, jeho transformovaná hodnota bude 1, ak niekto odpovedal 2, po transformácii to 

bude 4 atď. V prípade, že škála začína na 0, pracujete len s najvyššou hodnotou škály, t.j. 

nepričítavate 1, napr. pri škále od 0 do 4 bude vzorec vyzerať 4 - $source. Príklad nastavenia 

pri 5 bodovej Likertovej škále s rozsahom od 1 po 5 uvádzame v obrázku 2.7. 

 

Obrázok 2.7: Príklad nastavenia jednoduchej transformácie premennej 

V prípade, ak by ste chceli spraviť zložitejšiu transformáciu, môžete k tomu využiť možnosť 

podmienkovania. Môže ísť o prípad, kedy máte premennú, pri ktorej chcete zlúčiť nejaké 

hodnoty alebo vytvoriť kategórie. Príkladom môže byť vytvorenie premennej, ktorá bude 

vyjadrovať vekové kategórie. Povedzme, že sme sa v našom dotazníku pýtali respondentov na 

ich vek v rokoch, no neskôr máme záujem pracovať s vekovými kategóriami. Vždy 

odporúčame merať na čo najvyššej úrovni. Niektorí z vás sa možno pýtajú, na čo zisťovať vek 

v rokoch, keď môžeme respondentom ponúknuť na výber jednu z kategórií, nech sa zaradia. 

Takýmto spôsobom však strácate množstvo informácie. Lepšie je mať detailnejšiu informáciu, 

ktorú potom transformujete na „hrubšiu“, pretože spätne to nejde. Ako teda na to? Pri nastavení 

transformácie musíme vytvoriť podmienku či podmienky. Kliknutím na Add recode condition 

otvoríme možnosť pre nastavenie podmienok (Obrázok 2.8). 

 

Obrázok 2.8: Panel pre nastavenie podmienenej transformácie 

Ako vidíte na obrázku 2.8, prvá kolónka obsahuje prednastavené if $source, čo voľne znamená 

ak je zdrojová hodnota a za týmto môžeme nastaviť čo ďalej. Ak nám jedna takáto kolónka 

nestačí, môžeme pridať ďalšie, stlačením Add recode condition. Teraz musíme programu 

vysvetliť, ako má hodnoty transformovať. Vývojári jamovi nám rovno ponúkajú príklad pre 

lepšie intuitívne pochopenie nastavenia. V našom prípade by sme chceli transformovať 
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premennú vek (meraná na kontinuálnej úrovni), tak aby vznikla ordinálna premenná s tromi 

kategóriami: vek menší ako 30 rokov sa má stať hodnotou 1, medzi 30 (vrátane) až 50 (vrátane) 

sa má stať hodnotou 2, všetky ostatné hodnoty majú byť 3. V kolónke obsahujúcej if nastavíme 

podmienku a vo vedľajšej kolónke s use nastavíme, čo sa má stať, ak je podmienka splnená. 

Posledná kolónka je určená pre ostatné prípady (else use). Operátory („znamienka“), ktoré 

používame sú: 

• > - väčšie ako hodnota 

• < - menšie ako hodnota 

• <= - menšie alebo rovné ako hodnota 

• >= - väčšie alebo rovné ako hodnota 

• == - rovné hodnote 

• != - nie rovné hodnote 

Tieto operátory sú vysvetlené aj priamo v programe po kliknutí na časť, kde sa píšu. V rámci 

nášho príkladu by sme nastavili: 

• if $source > 50 use 3 – v tomto prípade sme nastavili strop ďalšiemu nastaveniu 

a hodnoty väčšie ako 50 sme transformovali za 3 

• if $source >= 30 use 2 – hodnoty, ktoré sú väčšie alebo rovné ako 30 zamení za 2 

• if $source < 30 use 1 – hodnoty menšie ako 30 zamení za 1 

• else use – nemusíme nastavovať 

V prípade tejto transformácie nastavíme aj Measure type na Ordinal. Nastavenie v programe 

jamovi zobrazujeme v obrázku 2.9. Po potvrdení uvidíme v dátach novú premennú „vek – R“, 

v stĺpci napravo od originálnej premennej „vek“. Alternatívnym nastavením je zložitejšia 

podmienka, kedy využívame operátory. Jedným z nich je and – v preklade „a“ tento operátor 

nám povolí v jednom kroku nastaviť 2 a viac podmienok, ktoré musia byť naplnené. Druhý 

operátor je or – v preklade „alebo“. Vďaka tomuto operátoru môžeme pridať viacero 

podmienok v jednom kroku s tým, že stačí, aby bol naplnený len jeden z nich, aby bola 

nastavená transformovaná hodnota. Alternatívne nastavenie transformácie by mohlo znieť takto 

(zobrazené v obrázku 2.10): 

• if $source < 30 use 1 – hodnoty menšie ako 30 zamení za 1 

• if $source >= 30 and $source <= 50 use 2 – hodnoty, ktoré sú väčšie alebo rovné 30 

a zároveň menšie alebo rovné 50 zamení za 2 

• if $source > 50 use 3 – hodnoty väčšie ako 50 zamení za 3 

Pri každom nastavení odporúčame, aby ste si skontrolovali, či transformácia funguje tak ako 

ste plánovali – pozrite si zopár hodnôt originálnej premennej a hodnoty transformovanej 

premennej. Ak by transformácia nefungovala tak, ako ste plánovali, skúste sa znovu zamyslieť 

nad systémom transformácie a skontrolujte nastavené podmienky.  
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Obrázok 2.9: Príklad nastavenia transformácie premennej vek (jednoduchá podmienka) 

 

Obrázok 2.10: Príklad nastavenia transformácie premennej vek (zložená podmienka) 

2.5 Matematické operácie 
Zatiaľ sme si ukázali ako dostať dáta do programu jamovi, ako nastaviť premenné a základné 

možnosti transformácie. V ďalších častiach tohto učebného textu sa budeme venovať 

deskriptívnej štatistike, no skôr ako sa k tomu dostaneme, je potrebné, aby sme sa oboznámili 

s ďalším spôsobom vytvárania nových premenných. V psychologickom výskume, konkrétne 

v kvantitatívnom výskume, nemôžeme merať konštrukty priamo, no meriame ich nepriamo 

prostredníctvom položiek psychodiagnostických nástrojov. Tieto nástroje, nazývané aj škály, 

inventáre alebo dotazníky, obsahujú rôzny počet položiek, ktoré sú určené pre nepriame 

meranie, inak povedané „zachytenie“ cieľového konštruktu. Jednotlivé položky majú určitú 

výpovednú hodnotu a môžeme sa napríklad zaujímať o frekvenciu výskytu jednotlivých 

odpovedí v našom súbore. Pre ďalšie pokročilejšie analýzy využívame hodnoty, ktoré vznikajú 

sčítaním alebo spriemerovaním hodnôt viacerých položiek tak, aby sme dostali jednu hodnotu, 

ktorá prezentuje daný konštrukt. V prípade, že by sme sa zaujímali o mieru extraverzie, mohli 

by sme zvoliť položky z Inventára Veľkej Päťky 2. Pre meranie extraverzie je určených 12 

položiek. Jednotlivé položky sú len nepriame indikátory, ktoré merajú konkrétnejšie prejavy 
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konštruktu, na základe jeho teoretického vymedzenia. Hodnotu extraverzie získame 

vypočítaním priemeru odpovedí. Podľa inštrukcie priloženej k inventáru je potrebné zohľadniť, 

že 6 položiek je formulovaných opačným smerom a je ich potrebné rekódovať (o reverzných 

položkách a ich transformácii sme informovali v predchádzajúcej podkapitole). Pri výpočtoch 

sa riaďte inštrukciou, ktorá bola uvedená pri vami použitých metodikách. Najčastejšie sú však 

využívané sumárne skóre (spočítanie jednotlivých odpovedí na položky), nazývané tiež hrubé 

skóre a priemerné skóre (priemer odpovedí na položky). Priemerné skóre má výhodu 

a nachádza využitie pri Likertových škálach, pretože nie je závislé na počte položiek, zakaždým 

bude jeho hodnota v rozmedzí použitej Likertovej škály. Ďalšia výhoda je pri chýbajúcich 

hodnotách – ak respondent zodpovie len na 10 z 12 položiek, môžeme vypočítať jeho priemerné 

skóre (ak nám absencia určitého počtu odpovedí neprekáža). Sumárne skóre nachádza 

uplatnenie najmä pri položkách, kde je len jedna možnosť správna (napríklad výkonové testy, 

inteligenčné testy a iné) alebo pri položkách typu áno/nie. Keďže tieto položky majú po 

transformácii len 2 možné hodnoty 0 a 1, využíva sa skôr sumárne skóre. Oba spôsoby si 

ukážeme.  

Pre vytvorenie novej vypočítanej premennej môžeme dvoj-kliknúť na hlavičku prázdneho 

stĺpca a zvoliť možnosť NEW COMPUTED VARIABLE, alebo môžeme ísť cez kartu Data 

a kliknúť na možnosť Compute. Otvorí sa nám okno podobné ako pri transformácii, teraz však 

nastavujeme vzorec, na základe ktorého budú vypočítané hodnoty novej premennej. V prvom 

kroku je užitočné nastaviť názov novej premennej. Názov by mal byť stručný a výstižný, 

napríklad Extraverzia_HS, Extra_mean a podobne. Dôležité je, aby ste sa vedeli ľahko 

zorientovať. Tak ako predtým, aj teraz môžete nastaviť popis pre novú premennú, no nie je to 

povinné. Najdôležitejšia časť je okienko na pravej strane, do ktorého píšete vzorec. Vzorec 

píšete s použitím názvov premenných. Na uľahčenie môžete kliknúť na tlačidlo ƒx, ktoré vám 

ponúkne premenné, ktoré sa nachádzajú vo vašich dátach ale aj iné automatické funkcie. 

Opätovne upozorňujem na zvýšenie pozornosti – ak zadáte zlý výpočet, budete pracovať 

s neplatnou premennou. Dobre si rozmyslite ako postupovať. 

Ak by ste mali záujem o výpočet hrubého skóre, môžeme jednoducho vybrať položky alebo 

napísať ich názvy a oddeliť ich znamienkom plus, napr. premenná1 + premenná2 + ... + 

premennáX. Taktiež môžete využiť funkciu SUM(), pričom do zátvorky napíšete alebo 

vyberiete premenné a oddelíte ich čiarkou, napr. SUM(premenná1, premenná2, ... , 

premennáX). Výhodou tohto prístupu je možnosť počítať aj v prípade ak máte pri premenných 

chýbajúce hodnoty a to pridaním argumentu ignore_missing = 1, ktorý oddelíte čiarkou za 

poslednou premennou vo vzorci. Pokiaľ napíšete jednoduchý vzorec bez funkcie či automatickú 

funkciu SUM() bez tohto argumentu a v nejakom riadku máte chýbajúcu hodnotu, nebude 

v danom riadku vypočítaná žiadna hodnota. Zápis s argumentom pre počítanie s chýbajúcimi 

hodnotami môže vyzerať napríklad takto SUM(premenná1, premenná2, ... , premennáX, 

ignore_missing = 1). 

Ak máte záujem o výpočet priemerného skóre, opäť môžete napísať vzorec ručne napr. 

(premenná1 + premenná2 + ... + premennáX) / X; čiže zadáte štandardný vzorec výpočtu 

priemeru: súčet hodnôt delene ich počtom. Tak ako v predchádzajúcom prípade odporúčame 

však využiť automatickú funkciu MEAN(). Stačí do zátvoriek vložiť premenné a oddeliť ich 

čiarkou. Taktiež môžete nastaviť argument ignore_missing = 1, pokiaľ máte v riadkoch pre 

niektorých premenných chýbajúce hodnoty, no chcete s nimi pracovať. Výsledný vzorec bude 

v tvare MEAN(premenná1, premenná2, ... , premennáX, ignore_missing = 1).  
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Ak počítate hrubé alebo priemerné skóre, dajte si pozor, aby ste použili už transformované 

reverzné položky (ak ste ich vypočítali). V obrázku 2.11 zobrazujeme nastavenia vypočítanej 

premennej Extra_priemer. Podľa manuálu k tomuto inventáru, máme otočiť položky číslo 11, 

16, 26, 31, 36, 51 (v našom príklade sú tieto premenné pomenované bfi a číslo položky). 

Najskôr sme si tieto premenné transformovali (uvedené v predchádzajúcej podkapitole) a teraz 

vypočítame priemer pre každého respondenta. V tomto konkrétnom prípade sme si vybrali 

funkciu MEAN() a do zátvoriek sme nastavili premenné (vybrali sme ich zo zoznamu 

premenných v ponuke ƒx) a oddelili čiarkou. Všimnite si, že niektoré premenné sú bez 

úvodzoviek a niektoré v úvodzovkách. V úvodzovkách sú tie, ktorých názvy obsahujú 

medzeru. Výsledný vzorec vyzerá nasledovne: MEAN(bfi1, bfi6, `bfi11 - R`, ̀ bfi16 - R`, bfi21, 

`bfi26 - R`, `bfi31 - R`, `bfi36 - R`, bfi41, bfi46, `bfi51 - R`, bfi56). Po napísaní vzorca máme 

automaticky vypočítané hodnoty v novej premennej Extra_priemer, viď Obrázok 2.11. 

 

2.11 Ukážka nastavenia vypočítanej premennej 

2.6 Filtrovanie dát 
Poslednou zo základných funkcií v jamovi je filtrovanie dát. Nachádza uplatnenie v prípade, že 

z nejakého dôvodu nemáme záujem pracovať s celým dátovým súborom ale iba 

s respondentmi, participantmi či všeobecne prípadmi, ktoré spĺňajú nejakú podmienku. 

Nastavením filtra vylúčime z ďalších analýz tie prípady, ktoré nespĺňajú stanovenú podmienku. 

Podmienka môže byť jednoduchá – napríklad chceme pracovať len s tými, ktorí uviedli ako 

pohlavie muž, no môže byť aj zložená – napríklad muži, ktorí majú najvyššie dosiahnuté 

vzdelanie stredoškolské a majú viac ako 30 rokov. 
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Ak chceme nastaviť filter, môžeme tak spraviť cez kartu Data a vyberieme možnosť Filters. 

Zobrazí sa nám okno, v ktorom môžeme nastaviť filter (Obrázok 2.12). Pri prvom otvorení okna 

je automaticky vytvorený prvý filter Filter 1, a v prvom stĺpci dátového súboru sa zobrazí nová 

premenná Filter 1. V jednotlivých riadkoch dátového súboru je vidieť, či je daný riadok aktívny 

 alebo neaktívny . V okne nastavenia filtra máme rôzne možnosti. Veľké „+“ slúži pre 

pridanie ďalšieho filtra. Oko pod ním slúži pre zobrazenie alebo skrytie filtra (pozor, nie na 

vypnutie) v dátovom súbore, čo je užitočné, ak máme viacero filtrov a chceme si nechať 

zobrazené len tie, ktoré sú aktívne. Nastavený filter vieme podľa potreby vypnúť a znovu 

zapnúť, na čo slúži posuvné tlačidlo, ktoré je v základe v stave „active“ a svieti na zeleno. 

Stlačením tohto tlačidla vieme filter deaktivovať, čím prestane filtrovať dáta. Ak chceme filter 

natrvalo odstrániť, môžeme kliknúť na X. Asi najdôležitejším je samotný priestor pre 

nastavenie podmienky, na základe ktorej chceme dáta filtrovať. Ak chcete, môžete si nastaviť 

aj slovný popis, k čomu filter slúži (Description).  

 

Obrázok 2.12: Základné okno pre nastavenie filtra prípadov (riadkov) 

Výslednú podmienku môžeme nastaviť viacerými spôsobmi. Využívame na to princíp podobný 

tomu pri transformáciách. V základe, potrebujeme programu povedať, na akom princípe má 

rozhodnúť, či má byť riadok (prípad, respondent) aktívny alebo neaktívny pre ďalšie analýzy. 

Napríklad, chceme nechať aktívne len ženy v našom dátovom súbore. Takúto informáciu nesie 

premenná „rod“, pri ktorej máme v rámci nášho príkladu hodnotu 1 pre ženy a 2 pre mužov. 

Podmienka bude rod == 1, t.j. chceme nechať aktívne riadky, v ktorých platí, že premenná 

hodnota v premennej rod je rovná 1. Dajte si pozor, v zápise sú dve = za sebou. Po dopísaní 

podmienky si môžete všimnúť, že aktívne zostanú len riadky, kde je podmienka naplnená 

(Obrázok 2.13). 
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Obrázok 2.13 Príklad vzhľadu dát po nastavení filtra rod == 1 

Ak by sme chceli filtrovať na základe viacerých podmienok, môžeme tak spraviť viacerými 

spôsobmi. Jedným z nich je vytvorenie ďalšieho filtra, pridanie ďalšieho riadku do jedného 

filtra (malé „+“ v okne, kde nastavujeme podmienku), prípadne priamo v riadku. To, aký 

spôsob zvolíte, je už na vás a záleží aj od toho, čo konkrétne potrebujete. Pre ukážku chceme 

pracovať len s prípadmi, kedy ide o ženy, ktoré majú menej ako 30 rokov a najvyššie 

dosiahnuté vzdelanie „Vysokoškolské I. stupňa“ (hodnota 4). Priamo v jednom riadku by sme 

mohli napísať „rod == 1 and vek < 30 and vzdelanie == 4“. Alebo môžeme túto podmienku 

nastaviť vo viacerých riadkoch (obrázok 2.14 a 2.15). 

 

2.14 Nastavenie filtra s viacerými podmienkami 

 

Obrázok 2.15 Príklad vzhľadu dát po nastavení filtra rod == 1 and vek < 30 and vzdelanie == 

4 

Pri práci s filtrami si dajte pozor, aby ste ich vypli (deaktivovali) prípadne odstránili, keď ich 

už nepotrebujete. 
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3. Základná deskriptívna štatistika 
Dáta, s ktorými pracujeme, poskytujú detailnú informáciu, ktorú je však nemožné uchopiť 

a pracovať s ňou. Pre možnosť zachytiť pomery v dátach využívame deskriptívnu štatistiku, 

ktorá nám umožňuje nazrieť na tieto dáta globálnejšie. Za pojmom deskriptívna štatistika sa 

skrýva množstvo ukazovateľov, s ktorými sa stýkame takmer dennodenne a v mnohých 

prípadoch si to ani neuvedomujeme. O niektorých z nich, ktoré používame pri psychologickom 

výskume a spracovávaní výsledkov, si povieme v nasledujúcich častiach. Rozdeľujeme ich na 

dve základné časti a to miery centrálnej tendencie, resp. miery polohy a miery variability. 

3.1 Miery polohy 
Miery polohy nám poskytujú predstavu o centrálnej tendencii ostatných hodnôt, zastupujú 

a reprezentujú ostatné hodnoty. Pri práci s psychologickými dátami používame najčastejšie 

aritmetický priemer, no využitie nachádza aj medián a modus. 

Aritmetický priemer je miera centrálnej tendencie, ktorá je v bežnom živote asi najčastejšie 

využívanou. Aritmetický priemer poznáme už zo základnej školy. Väčšina z nás ho využívala 

napríklad pre výpočet známky, ktorú dostaneme na vysvedčení z predmetov. Ak sme chceli 

vedieť, akú známku budeme mať z matematiky, sčítali sme si jednotlivé známky a vydelili 

počtom týchto známok. Výsledkom bola priemerná známka z predmetu, vďaka čomu sme mali 

informáciu, ako na tom zhruba sme. Priemer teda vypočítame ako súčet všetkých hodnôt 

premennej, ktorý vydelíme počtom týchto hodnôt.  

 

𝑥̅ =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

Ak by sme z matematiky mali za polrok 6 známok, napríklad: 2, 3, 2, 1, 3, 1, priemer známok 

by sme vypočítali ako: 

  

𝑥̅ =  
2 + 3 + 2 + 1 + 3 + 1

6
 

𝑥̅ =  
12

6
 

𝑥̅ =  2 
Zistili by sme, že na vysvedčení pravdepodobne uvidíme známku 2. Už pri takto nízkom počte 

prvkov (jednotlivých známok) je priemer užitočným ukazovateľom a vieme vďaka nemu 

zhodnotiť aj porovnať pomery v dátach. Náš spolužiak by mohol mať známky 2, 1, 2, 3, 2, 1 – 

na prvý pohľad vidíme, že známky sa mierne líšia, a vďaka priemeru zistíme, že spolužiak má 

o niečo lepšie známky ako my, jeho priemer by bol cirka 1,83 (no dvojku na vysvedčení bude 

mať pravdepodobne aj on). Pri práci s priemermi je však potrebné uvedomiť si, že priemer 

priemerov nemusí byť nutne priemer celku. Ak by sme chceli vypočítať priemernú známku 

v skupine kamarátov, mohli by sme spočítať priemerné známky našich kamarátov a vydeliť ich 
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počtom kamarátov. V prípade, že by všetci kamaráti, s ktorých známkami by sme pracovali, 

mali rovnaký počet známok, získame platnú informáciu. Ak sa však počet známok líši, 

nezískame platnú informáciu. V takomto prípade musíme vypočítať vážený aritmetický 

priemer. Slovo „vážený“ v tomto prípade neznamená oslovenie, vyjadrujúce našu mieru úcty 

k priemeru, no znamená, že pri výpočte prihliadame na počet prvkov – vyvažujeme vzhľadom 

na počet prvkov. Vážený priemer vypočítame tak, že jednotlivé priemery vynásobíme počtom 

hodnôt, z ktorých boli získané, tieto hodnoty spočítame a vydelíme celkovým počtom hodnôt. 

Rozdiel medzi priemerom priemerov a váženým aritmetickým priemerom uvádzame nižšie. 

V tomto príklade sme sa rozhodli zistiť priemernú známku v skupine 10 kamarátov. Poprosili 

sme ich, aby nám povedali, akú majú priemernú známku z matematiky (zaokrúhlenú na 2 

desatinné miesta) ako aj počet známok, ktoré majú. Podľa informácií v tabuľke vidíme, že počet 

známok sa u jednotlivých kamarátov líši. Ak by sme v tomto prípade len vypočítali priemer 

priemerov, získali by sme inú hodnotu ako v prípade platného postupu – počítania váženého 

aritmetického priemeru. 

 

Kamarát Počet 

známok 

Priemerná 

známka 

Priemerná známka 

krát počet známok 

Veronika 4 1,25 5 

Peter 6 1,83 10,98 

Patrik 6 2 12 

Ivana 6 2,33 13,98 

Vlaďa 6 1,33 7,98 

Dominika 7 1,71 11,97 

Juraj 4 2,25 9 

Peťo 5 2,6 13 

Eva 7 1,14 7,98 

Michal 5 3,2 16 

Priemer priemerov 1,964 
 

Vážený aritmetický priemer 1,927 

 

Uvádzame tiež zopár dôležitých informácii ohľadom priemeru. 

Súčet odchýlok všetkých hodnôt od aritmetického priemeru sa rovná nule: ak by sme z hodnôt 

vypočítali priemer, potom tento priemer odčítali od jednotlivých hodnôt a tieto rozdiely sčítali, 

získame hodnotu 0. Máme hodnoty: 2, 3, 2, 1, 3, 1. Priemer je 2. Rozdiely od priemeru sú: 0, 

1, 0, -1, 1, -1. Ich súčet je 0. 

Hodnota priemeru je najbližšou hodnotou k všetkým ostatným hodnotám, na základe ktorých 

bol priemer vypočítaný. Odbornejšie (no zložitejšie) vyjadrené, súčet druhých mocnín 

odchýlok všetkých hodnôt od aritmetického priemeru je menší ako súčet druhých mocnín 

odchýlok všetkých hodnôt od akejkoľvek inej hodnoty. To znamená, že pokiaľ dáme všetky 

odchýlky od priemeru na druhú (vynásobíme ich sebou samým) a tieto hodnoty sčítame, 

získame menšie číslo, ako keby sme pracovali s akoukoľvek inou hodnotou mimo priemeru. 

Odchýlky od priemeru sme vypočítali v predchádzajúcom bode, teraz ich umocníme: 0, 1, 0, 1, 

1, 1. Súčet je 4. Vyskúšame si spraviť odchýlky od inej hodnoty, napr. 2,1. Odchýlky budú: -
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0,1; 0,9; -0,1; -1,1; 0,9; -1,1. Umocnením získame hodnoty: 0,01; 0,81; 0,01; 1,21; 0,81 a 1,21. 

Súčet je 4,07 – táto hodnota je vyššia, ako keď sme použili odchýlky od priemeru. 

Ak jednotlivé hodnoty, na ktorých bol vypočítaný priemer, nahradíme ich priemerom, ich 

priemer zostane rovnaký. To znamená, že ak nahradíme naše pôvodné hodnoty ich priemerom 

a vypočítame priemer, hodnota priemeru sa nezmení.  

Aritmetický priemer je ovplyvniteľný vzdialenými alebo extrémnymi hodnotami. To znamená, 

že ak by sme mali v súbore hodnôt netradične nízku alebo vysokú hodnotu, priemer sa zmení 

a je menej výpovedný pre väčšinu dát. Príkladom môže byť rad hodnôt 1, 2, 1, 1, 5. Hodnota 5 

je v tomto prípade vzdialená od zvyšku. Ak vypočítame priemer z týchto hodnôt, získame 

hodnotu 2, bez tejto vzdialenej hodnoty by bol priemer 1,25. 

Aritmetický priemer aritmetických priemerov častí súboru nie je aritmetickým priemerom 

celého súboru – túto informáciu sme popísali v príklade vyššie. 

Priemer, ako deskriptívny údaj, nemôžeme používať v prípade, ak je rozloženie dát 

viacvrcholové. To znamená, že je viacero hodnôt, ktoré majú rovnakú a zároveň najčastejšiu 

početnosť. Z hľadiska rozloženia dát priemer tiež nepoužívame, ak sú hodnoty veľmi 

zošikmené alebo je počet hodnôt extrémne malý. Priemer nemôžeme použiť, pokiaľ nemeriame 

na kontinuálnej úrovni, nemôžeme ho použiť pri ordinálnych alebo nominálnych premenných 

(napr. priemerné najvyššie dosiahnuté vzdelanie alebo priemerné pohlavie). 

Medián je prostrednou hodnotou v usporiadanom rade hodnôt. Medián poskytuje informáciu 

o povahe dát takým spôsobom, že polovica hodnôt v tomto rade je menšia ako medián alebo 

rovná mediánu a polovica hodnôt je rovná alebo vyššia ako medián. Ak máme rad čísel, ktorý 

usporiadame od najmenšej po najväčšiu, tak číslo uprostred je medián. Pri nepárnom počte 

hodnôt nájdeme medián tak, že v usporiadanom rade hodnôt sledujeme číslo na pozícii (n-

1)/2+1, pričom „n“ vyjadruje počet hodnôt. Ak by sme mali 7 hodnôt: 1, 1, 2, 3, 3, 4, 4, tak 

medián nájdeme na pozícii (7-1)/2+1, t.j. štvrtá hodnota v rade, v našom prípade hodnota 3. 

V prípade párneho počtu hodnôt je mediánom aritmetický priemer hodnôt, ktoré sa nachádzajú 

na pozíciách n/2 a n/2+1. Napríklad pri 8 hodnotách 1, 1, 2, 3, 3, 4, 4, 4 vypočítame medián 

ako priemer hodnôt na štvrtej (8/2) a piatej (8/2+1) pozícii, v našom prípade hodnota 3. Medián 

nie je ovplyvnený extrémnymi hodnotami, keďže nie je vypočítaný na základe všetkých 

konkrétnych hodnôt ale na základe ich počtu. Pre príklad môžeme zameniť jednu z hodnôt 4 

v predchádzajúcom rade za, povedzme, 15. Pri aritmetickom priemere by takáto extrémna 

hodnota spôsobila výraznú zmenu (2,75 verzus 4,125), no táto extrémna hodnota nič nemení na 

prostrednej hodnote, t.j. medián je stále 3. Medián nachádza uplatnenie aj pri deskripcii 

ordinálnych premenných. Môžeme sa zaujímať o najvyššie dosiahnuté vzdelanie 

u respondentov, pričom by mali na výber možnosti 1) Základná škola, 2) Stredná škola bez 

maturity, 3) Stredná škola s maturitou, 4) Vysoká škola I. stupňa a 5) Vysoká škola II. stupňa 

a viac. Pokiaľ mediánom tejto premennej bude hodnota 3, zistíme, že polovica respondentov 

má dosiahnuté nižšie ako stredoškolské vzdelanie s maturitou alebo práve toto vzdelanie 

a polovica má dosiahnuté stredoškolské vzdelanie s maturitou alebo vyššie. Medián nemôžeme 

použiť pri deskripcii nominálnych premenných, keďže jednotlivé kategórie nominálnym 

premenných nie je možné usporiadať. 

Modus pravdepodobne všetci poznáme, najmä vďaka ich hitu Ty, ja a môj brat („odrazové 

sklíčka, sklíčka dotykov, svietia vo tme, ty si taká fajn...“). V rámci deskriptívnej štatistiky je 
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modus možno menej obľúbený, no vyjadruje hodnotu, ktorá je zastúpená v najvyššej frekvencii 

(najčastejšie). Použiteľný je pri všetkých úrovniach merania (nominálnej, ordinálnej 

a kontinuálnej), no málokedy je priamo pomenovávaný. Príkladom môže byť deskripcia 

výskumného súboru, kde popíšeme, že väčšina respondentov boli ženy. V takomto prípade je 

modusom premennej rod hodnota žena (prípadne číslo, ktorým sme túto nominálnu kategóriu 

označili). V rade čísel 1, 1, 1, 2, 2, 2, 2, 3, 3, sa 1 vyskytuje trikrát, 2 štyrikrát a 3 dvakrát. 

Modusom je teda hodnota 2, lebo má najvyššiu frekvenciu 

3.2 Miery variability 
Miery variability či miery disperzie ponúkajú doplňujúcu informáciu k mieram polohy. 

Informujú nás o tom, ako hodnoty premennej variujú, aké majú rozloženie. Pre dôkladnejšie 

informovanie o povahe hodnôt používame miery polohy a variability spoločne. Pravdepodobne 

najznámejším a najpoužívanejším párom je priemer a štandardná odchýlka. Vo výskumných 

štúdiách ste sa už určite stretli s M (z anglického mean, priemer) a SD (z anglického standard 

deviation, štandardná odchýlka). Postupne uvedieme krátku informáciu o používaných mierach 

variability.  

Variačné rozpätie 

Variačné rozpätie, po anglicky range, je najjednoduchšou mierou variability. Vyjadruje rozdiel 

medzi maximálnou hodnotou premennej (xmax) a minimálnou hodnotou premennej (xmin). Jej 

matematické vyjadrenie vyzerá takto: 

𝑅 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 

Dajte si však pozor: veľké R je používané najmä pre označenie viacnásobného korelačného 

koeficientu, preto ak sa s ním stretnete vo výsledkoch nejakej štúdie, pravdepodobne nejde 

o variačné rozpätie. Vo všeobecnosti sa len málokedy variačné rozpätie používa pre účely 

popisu variability dát. Je málo informatívne – ak je variačné rozpätie veku respondentov 30, 

tak vieme, že medzi najmladším a najstarším respondentom je rozdiel 30 rokov, avšak nevieme, 

aké sú pomery. Môže ísť o situáciu, kedy má najmladší respondent 18 rokov a najstarší 48 

rokov, no rovnakú hodnotu dostaneme aj pri zásadne inom súbore, napríklad vo veku 43 až 73 

rokov. Taktiež neponúka informáciu o rozložení hodnôt okolo centrálnej hodnoty a je 

ovplyvnené extrémnymi hodnotami. Príkladom môže byť súbor, kde je väčšina respondentov 

vo veku 18 až 30 rokov, v takom prípade je hodnotou variačného rozpätia 12, no stačí, že 

pribudne jeden 50 ročný respondent a hodnota sa rázne zmení na 32, len kvôli jednej, odľahlej 

hodnote. V praxi je lepšie uviesť informáciu o minimálnej a maximálnej hodnote, čo je pre nás 

ako aj pre čitateľa informatívnejšie. 

Rozptyl 

Rozptyl, po anglicky variance, je na pozadí viacerých pokročilejších štatistických analýz. 

Vyjadruje rozloženie hodnôt okolo priemeru, avšak v jednotkách na druhú, čiže je ťažko 

interpretovateľný. Vzorec pre jeho výpočet vyzerá následovne: 

𝑠2 =
1

𝑛 − 1
∑(𝑥𝑖 −  𝑥̅)2

𝑛

𝑖=1
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Slovne by sme tento vzorec vyjadrili ako priemer štvorcov odchýlok všetkých hodnôt od 

priemeru. Keby sme chceli rozptyl vypočítať ručne, v prvom kroku by sme vypočítali priemer 

všetkých hodnôt 𝑥̅. Potom by sme zobrali prvú hodnotu a odčítali od nej priemer a výsledok by 

sme dali na druhú (to je ten štvorec v definícii). Prečo na druhú? Ak si pamätáte z hodín 

matematiky, tak akékoľvek číslo na druhú je nutne pozitívne. Ak by sme to nespravili, získali 

by sme negatívne čísla pri tých hodnotách, ktoré sú menšie ako priemerná hodnota. Ak ste 

pozorne čítali vlastnosti priemeru, tak viete, že súčet odchýlok hodnôt od priemeru týchto 

hodnôt sa rovná nule – výsledkom by bola nula. Následne, po vypočítaní štvorcov odchýlok pre 

všetky hodnoty, vypočítame ich priemer, a voilà, úspešne sme vypočítali rozptyl. Výsledná 

hodnota je na druhú, takže je ťažko interpretovateľná – napríklad rozptyl veku 256 rokov2 je 

prinajmenšom podivné vyjadrenie. Stačí však spraviť jednu matematickú operáciu, konkrétne 

odmocnenie, a vznikne nám... 

Štandardná odchýlka 

Štandardná odchýlka, prípadne smerodajná odchýlka, anglicky standard deviation, je 

vypočítaná prostredníctvom odmocnenia rozptylu. Vzorec pre výpočet vyzerá takto: 

𝑠 =  √
1

𝑛 − 1
∑(𝑥𝑖

𝑛

𝑖=1

− 𝑥̅)2 

Ak by sme ho chceli vyjadriť slovne, povedali by sme, že ide o odmocninu priemeru štvorcov 

odchýlok všetkých hodnôt od priemeru, ale to už vieme na základe definície rozptylu.  

V psychologickej literatúre sa štandardná odchýlka najčastejšie označuje ako SD. Vysoko 

pravdepodobne ste sa pri čítaní psychologickej literatúry s touto skratkou stretli, keďže je 

uvádzaná snáď v každej výskumnej štúdii. Prečo je taká populárna? Na čo nám štandardná 

odchýlka slúži? Štandardná odchýlka je dobrou priateľkou miery centrálnej tendencie 

priemeru. On je priemerný, ona štandardná, a napriek tomu pre nás ako výskumníkov má tento 

pár veľký význam. Štandardná odchýlka totižto vyjadruje rozloženie hodnôt okolo priemeru. 

V prípade distribúcie, ktorá je podobná normálnej distribúcii dát, platí pravidlo 68-95-99,7, 

ktoré je pre nás informatívne, a vďaka nemu máme lepšiu predstavu o povahe dát, resp. 

distribúcii hodnôt analyzovanej premennej: 

• približne 68 % hodnôt premennej leží v oblasti medzi 1 SD pod priemerom a 1 SD nad 

priemerom 

• ak sa presunieme na oblasť -2 SD až +2 SD, nájdeme tam približne 95 % hodnôt 

• takmer všetky hodnoty (99,7 %) sa nachádzajú v rozmedzí -3 SD až +3 SD 

Grafické zobrazenie tohoto pravidla nájdete v obrázku 3.1. Môžete si všimnúť, že priemer tejto 

distribúcie je 0, a potom sa tam nachádzajú nejaké iné znaky σ (malá sigma) – netreba sa báť, 

ide o takzvanú populačnú štandardnú odchýlku, no toto nás ďalej nemusí zaujímať, berme to 

ako SD. Vidíme, že medzi priemerom a 1 SD či už plus alebo mínus sa nachádza 34,1 % hodnôt, 

medzi 1 SD a 2 SD sa nachádza 13,6 % hodnôt, medzi 2 SD a 3 SD sa nachádza 2,1 % hodnôt.  
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Obrázok 3.1 Normálna distribúcia a oblasti štandardných odchýlok (zdroj: M. W. Toews - Own 

work, based (in concept) on figure by Jeremy Kemp, on 2005-02-09, CC BY 2.5, 

https://commons.wikimedia.org/w/index.php?curid=1903871) 

Vďaka tomuto pravidlu si vieme prakticky predstaviť, ako sú dáta rozložené. Priemer ako 

deskriptívny ukazovateľ je dôležitý, no sám o sebe nedostačujúci. Predstavte si, že sme robili 

dva výskumy na samostatných súboroch (v každom výskumnom súbore boli jedineční 

respondenti). V oboch súboroch sa nám podarilo vyzbierať odpovede od 300 respondentov. 

Zamerali sme sa na všeobecnú dospelú populáciu – oslovovali sme dospelých ľudí s prosbou 

o zapojenie sa do výskumu. Chceme sa pozrieť na to, aký je priemerný vek prvom a druhom 

súbore (ako na to v programe jamovi si ukážeme v ďalšej časti). Úplnou náhodou zistíme, že 

v oboch súboroch je priemerný vek Mvek = 41,35 roka (veľmi nepravdepodobné, ale pre účely 

príkladu ideálne). Čo je však rozdielne, je práve štandardná odchýlka. V prvom súbore je to 

napríklad SD = 2,70 a v druhom SD = 7,80. Na základe štandardnej odchýlky vidíme, ako sú 

dáta vzdialené od priemeru. Zatiaľ čo v prvom súbore máme väčšinu respondentov v rozmedzí 

od 38,65 rokov (M – 1 SD) až 44,05 rokov (M + 1 SD), a takmer všetkých respondentov 

v rozsahu 35,95 rokov (M – 2 SD) až 46,75 rokov (M + 2 SD), v druhom súbore sú tieto rozpätia 

širšie, 33,55 až 49,15 roka v prípade jednej štandardnej odchýlky, a 25,75 až 56,95 roka 

v prípade dvoch štandardných odchýlok. Štandardná odchýlka je pre naše zhodnotenie pomerov 

premenných dôležitou deskriptívnou jednotkou. Na základe rovnakého alebo veľmi podobného 

priemeru by sme mohli usúdiť, že súbory sú v tomto prípade veľmi podobné, avšak na základe 

veľmi rozdielnej štandardnej odchýlky vidíme, že distribúcia veku je pomerne rozdielna 

v týchto dvoch súboroch. Túto informáciu majte na pamäti nielen v prípade práce na vlastnom 

výskume, ale aj pri rešerši výskumnej literatúry – zaujímajte sa o deskriptívu či už pri popise 

výskumného súboru ale aj pri meraných konštruktoch, získate tak lepší a kritickejší pohľad na 

výskum a možné závery z neho plynúce. 

Medzikvartilové rozpätie  

Medzikvartilové rozpätie, po anglicky interquartile range, v skratke IQR, je posledná miera 

variability, ktorej sa budeme venovať. Pojem rozpätie sme použili hneď na začiatku tejto 

podkapitoly, šlo o hodnotu, kde sme z maximálnej hodnoty odpočítali minimálnu hodnotu. 

https://commons.wikimedia.org/w/index.php?curid=1903871
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V prípade medzikvartilového rozpätia pôjde o podobný princíp, avšak ako už názov napovedá, 

pôjde o rozpätie medzi kvartilmi. Čo sú to tie kvartily a ako vypočítame medzikvartilové 

rozpätie? Kvartil je jeden z koeficientov relatívneho umiestnenia. Tieto koeficienty nám 

hovoria o relatívnej pozícii určitej hodnoty v usporiadanom rade hodnôt. Najčastejšie sa 

používajú percentily, decily a kvartily. S percentilmi a decilmi sa budete stretávať napríklad pri 

psychodiagnostike. Prostredníctvom psychodiagnostickej metodiky získate určitú hodnotu pre 

daného človeka. Ako je však na tom v porovnaní s inými ľuďmi? Vďaka normám k metodike, 

ktoré sú získané prostredníctvom testovania mnohých ľudí, získate odpoveď. Testovaný človek 

môže mať hodnotu, ktorá sa rovná povedzme 65 percentilu – to znamená, že 65 % ľudí na 

základe ktorých boli počítané normy, má rovnakú alebo nižšiu hodnotu ako je nami zistená 

hodnota a naopak 35 % ľudí má rovnakú alebo vyššiu hodnotu. Poďme naspäť ku kvartilom. 

Ľudskejšou rečou, kvartil je štvrtina. Predstavme si, že máme 100 hodnôt. Týchto 100 hodnôt 

usporiadame od najmenšej po najväčšiu a chceme ich rozdeliť na 4 rovnaké časti. Slovo 

rovnaké znamená, že tieto časti budú mať rovnaký počet hodnôt. V prípade 100 hodnôt je to 

jednoduché: 100 / 4 = 25. Každá časť má obsahovať 25 hodnôt. Hodnotu 100 používame aj 

z dôvodu, že si to vieme jednoducho preniesť na percentá – každá časť má obsahovať 25 % 

hodnôt. Na to, aby sme rozdelili usporiadaný rad hodnôt na štyri rovnaké časti, potrebujeme 3 

hodnoty. Číslo, ktoré vyjadruje prvý kvartil, vymedzuje prvých 25 % hodnôt, číslo ktoré 

vyjadruje druhý kvartil, vymedzuje prvých 50 % hodnôt. Ak ste pozorne čítali o mediáne, iste 

viete, že je to vlastne druhý kvartil. Posledné, tretie číslo, vymedzí prvých 75 % hodnôt, pričom 

nám zostane najvyšších 25 % hodnôt. Pre grafické zobrazenie si pozrite Obrázok 3.2. 

 

 Obrázok 3.2 Grafické zobrazenie medzikvartilového rozpätia 

Ako môžete vidieť, medzikvartilové rozpätie vyjadruje rozpätie medzi prvým a tretím 

kvartilom. Ako ho teda vypočítať? Podobne ako rozpätie, avšak v tomto prípade nepoužijeme 

hodnoty maxima a minima, ale od hodnoty tretieho kvartilu (Q3) odčítame hodnotu prvého 

(Q1).  

𝐼𝑄𝑅 = 𝑥𝑄3 − 𝑥𝑄1 

Tak ako štandardná odchýlka patrí k priemeru, medzikvartilové rozpätie používame ako mieru 

variability k mediánu. Vyjadruje nám rozpätie stredných 50 % hodnôt. No podobne ako pri 

variačnom rozpätí, ak chcete uviesť detailnejšiu deskriptívu, uveďte radšej hodnotu prvého 

a tretieho kvartilu. 

 

3.3 Frekvenčná analýza 
Frekvenčná analýza je pomerne jednoduchá záležitosť. Vďaka tejto analýze zisťujeme 

frekvenciu, či inak povedané početnosť výskytu určitého javu. Napríklad chceme vedieť, aký 

je počet mužov a žien v našom výskumnom súbore alebo koľko ľudí ukončilo určitý stupeň 

vzdelania. Frekvenčnú analýzu uplatňujeme najmä na nominálne alebo ordinálne premenné. Pri 

popise premenných meraných na kontinuálnej úrovni preferujeme skôr miery centrálnej 

Minimum Prvý kvartil Druhý kvartil Tretí kvartil Maximum

Prvá štvrtina Druhá štvrtina Tretia štrvrtina Štvrtá štvrtina

Medzikvartilové rozpätie
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tendencie a variability, ktoré sú uvedené v predchádzajúcich častiach. Pri popise početnosti 

určitého javu používame buď to absolútnu hodnotu, napríklad v našom výskumnom súbore 

bolo 32 respondentov, ktorí uviedli ako najvyššie dosiahnuté vzdelanie „stredoškolské bez 

maturity“. Uvádzanie konkrétnych hodnôt patrí k štandardu, no rovnako je vhodné doplniť túto 

hodnotu aj percentuálnym podielom. S percentami sme sa už mnohokrát stretli a ich 

pochopenie je veľmi intuitívne. Čitateľ vďaka percentuálnemu vyjadreniu ľahko pochopí 

pomery v našich dátach. Nezabudnite preto uvádzať nielen konkrétne hodnoty ale aj ich 

percentuálny podiel.  

3.4 Deskriptívna analýza v programe jamovi 
V tejto časti si konkrétne ukážeme, ako spraviť deskriptívnu štatistiku v programe jamovi. 

Našťastie pre nás je to naozaj jednoduché. Domnievame sa, že najlepšie sa to naučíme na 

konkrétnom prípade. Deskriptívna štatistická analýza nachádza uplatnenie hneď na začiatku 

analýzy dát, keď sa chceme dozvedieť niečo o našom výskumnom súbore. Tieto informácie sú 

zaujímavé nielen pre nás, ale tvoria dôležitú časť vedeckých publikácií – nájdete ju v každej 

dobrej kvantitatívnej výskumnej práci a rovnako je tomu aj v prípade vašich záverečných prác. 

Poďme teda na to! 

V prvom rade si v jamovi otvoríme kartu Analyses, kde nájdeme ikonu Exploration, klikneme 

a zvolíme Descriptives (Obrázok 3.3).  

 

Obrázok 3.3 Umiestnenie ponuky deskriptívnej štatistickej analýzy 

Po kliknutí sa zmení používateľské rozhranie, pričom pribudne nové okno, v ktorom sa bude 

odohrávať celé čaro deskriptívnej analýzy, všetko „pod jednou strechou.“ Rovnako tak nám 

v časti pre výsledky hneď pribudla tabuľka, ktorá neobsahuje žiadne výsledky. To dôležité 

z deskripcie si ukážeme v tejto časti, no vrátime sa sem aj pri ďalších častiach tejto učebnice.  

Ponuku pre deskriptívnu analýzu zobrazuje Obrázok 3.4. V prvom rade si môžeme všimnúť 

okno, v ktorom sa nachádzajú premenné v našom súbore. Hneď vedľa je okno s názvom 

Variables a pod ním je okienko s názvom Split by. Do okna Variables presúvame premenné, 

ktoré chceme analyzovať. Okienko Split by plní veľmi šikovnú funkciu – ak do neho dáme 

premennú, všetky výpočty, ktoré si nastavíme, sa budú robiť samostatne pre skupiny 

definované touto premennou. Táto funkcia je povolená len pre nominálne a ordinálne 

premenné. Nižšie si môžete všimnúť začiarkovacie políčko Frequency tables – vďaka nej nám 

bude vypočítaná frekvenčná analýza. Jamovi ponúka aj možnosť dvojakého zobrazenia 

výsledkov pomocou výberového okna. V základe (Variables across columns) budú premenné 

v stĺpcoch a deskriptívne ukazatele v riadkoch, alebo naopak pri zvolení možnosti Variables 

across rows. Nižšie sa nachádzajú dve časti, Statistics a Plots. 
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Obrázok 3.4 Vzhľad okna deskriptívnej analýzy 

V tejto podkapitole si ukážeme len časť Statistics, k Plots sa dostaneme neskôr. Keď si 

rozklikneme túto časť, otvorí sa nám množstvo možností, ktoré môžeme označiť, pričom 

viaceré sú už v základe zvolené (Obrázok 3.5). Priblížime, čo ktorá možnosť znamená: 

• Sample Size – informácie o našom súbore, respektíve o respondentoch, ktorí spĺňajú 

kritéria nastaveného filtrovania. N vyjadruje celkový počet, Missing znamená, že sa nám 

zobrazí počet respondentov, ktorým chýba hodnota v analyzovanej premennej. 

• Percentile Values – výpočet hodnôt určitého percentilu alebo hodnôt, ktoré rozdeľujú 

usporiadaný rad hodnôt nejakej premennej. Ak by sme zvoli, Cut points for 4 equal 

groups, získali by sme hodnoty kvartilov. Ak by sme zvolili, Percentiles, získame 

hodnoty konkrétnych percentilov. 

• Central Tendency – tu si nastavujeme miery centrálnej tendencie, v základe sú zvolené 

Mean (priemer) a Median (medián). Na výber máme aj Mode (modus) alebo Sum (súčet 

všetkých hodnôt premennej), ten však pre naše účely nepoužívame. 

• Dispersion – tu si nastavujeme miery variability, inak povedané disperzie. V základe je 

označené prakticky všetko, čo potrebujeme – Std. deviation (štandardná odchýlka), 

Minimum (najnižšia hodnota), Maximum (najvyššia hodnota). Zaujímať nás môže aj 

IQR (medzikvartilové rozpätie). Ďalšie možnosti pre naše účely nepotrebujeme. 

• Distribution a Normality – výpočty vhodné pre posúdenie distribúcie hodnôt premennej, 

viac si k tomu povieme pri časti o zhodnotení normality dát, v časti o inferenčnej 

štatistike. 

• Mean Dispersion – výpočet doplňujúcich informácií k priemeru, ktoré pre naše účely 

nepotrebujeme. 

• Outliers – jamovi nám uvedie čísla riadkov najnižších a najvyšších hodnôt premennej. 

Táto možnosť môže byť užitočná pre rýchle zhodnotenie takzvaných vzdialených 

hodnôt – tejto problematike sa venujeme v kapitole 5.4. 
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Obrázok 3.5 Nastavenia v časti Statistics 

Po presunutí niektorej z premenných do okienka Variables sa nám vo vedľajšom okne jamovi 

objavia výsledky deskripítvnej alebo frekvenčnej analýzy. Ak by sme chceli bližšie popísať náš 

súbor, môžeme sa zamerať základné socio-demografické premenné. Najskôr môžeme 

charakterizovať náš súbor z hľadiska celkového počtu respondentov a ich priemerného veku. 

Do okienka Variables si vložíme premennú vek, výsledok je zobrazený v Obrázku 3.6. Vidíme 

tabuľku, v ktorej sú deskriptívne ukazatele písané v riadkoch (Variables across columns).  

 

Obrázok 3.6 Výsledok deskriptívnej analýzy v programe jamovi 

Ak by sme chceli informáciu o veku uviesť špecificky pre mužov a ženy, pridáme do okienka 

Split by aj premennú pohlavie. Výsledok je zobrazený v Obrázku 3.7. Ako vidíte, výsledky sú 

samostatne v riadkoch pre mužov a ženy. Takýmto spôsobom to funguje či máte dve alebo viac 

skupín (kategórií premennej).  
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Obrázok 3.7 Výsledok deskriptívnej analýzy s použitím funkcie Split by v programe jamovi 

Pre zistenie početnosti jednotlivých kategórií premennej, využijeme funkciu Frequency tables. 

Túto funkciu však používame len pre nominálne alebo ordinálne premenné. V Obrázku 3.8 

zobrazujeme výsledok frekvenčnej analýzy pre premenné pohlavie a najvyššie dosiahnuté 

vzdelanie. Pre účely získania detailnejších hodnôt pre percentá, sme v nastavení zmenili počet 

desatinných miest na tri. V tejto tabuľke vidíme stĺpec s názvom Levels, v ktorý nesie 

informáciu o jednotlivých hodnotách (kategóriach) premennej. Keďže sme si tieto hodnoty 

v dátovom súbore pomenovali, vidíme ich názvy. V druhom stĺpci s názvom Counts sa 

nachádza informácia o absolútnom počte. Tretí stĺpec % of Total vyjadruje percentuálny pomer 

jednotlivých kategórií. Posledný stĺpec Cumulative % vyjadruje takzvané kumulatívne 

percento. Uplatnenie nachádza pri ordinálnych premenných, kde percentuálna hodnota 

vyjadruje, koľko respondentov označilo danú odpoveď alebo nižšiu. V rámci nášho príkladu 

môžeme vidieť, že stredoškolské vzdelanie s maturitou alebo nižšie označilo 82,2 % 

respondentov (7,1 + 34,5 + 40,6 = 82,2).  
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Obrázok 3.8 Výsledok frekvenčnej analýzy premenných pohlavie a vzdelanie  

Takýmto spôsobom sa dokážeme dopracovať k rôznym informáciám o premenných. Nižšie 

uvádzame príklad zápisu informácií o výskumnom súbore: 

Náš výskumný súbor tvorilo 281 respondentov vo veku od 18 do 72 rokov (M = 42,34; 

SD = 15,49). Priemerný vek mužov (N = 138) bol 42,59 (SD = 15,70) a žien (N = 143) 

bol 42,28 (SD = 15,34) roka. Väčšina respondentov uviedla ako najvyššie dosiahnuté 

vzdelanie stredoškolské s maturitou (N = 114; 40,6 %), ďalej stredoškolské bez maturity 

(N = 97; 34,5 %), vysokoškolské II. stupňa (N = 42; 14,9 %), základné (N = 20; 7,1 %) 

a vysokoškolské I. stupňa (N = 8; 4,2 %). Z hľadiska rodinného stavu, väčšina 

respondentov bola v manželskom zväzku (48,8 %), za ktorými nasledovali slobodní 

respondenti (23,1 %), rozvedení (12,5 %), respondenti vo vzťahu (10,7 %) a ovdovení 

respondenti (5 %). 

Samozrejme, zápis a množstvo informácií, ktoré uvediete závisí od toho, čo je pre vás dôležité, 

no zaužívané je uvedenie počtu respondentov, mužov a žien; priemeru a štandardnej odchýlky 

veku respondentov; frekvenčnej analýzy najvyššieho dosiahnutého vzdelania. V prípade, že 

chcete uviesť frekvenčnú analýzu premennej, ktorá má viacero kategórií, napr. 4 a viac, môžete 

využiť aj tabuľku. Niekedy sa pre grafické zobrazenie frekvencie využíva napr. 

koláčový/kruhový graf, jeho využitie však zvážte – naozaj je prínosné, ak pridám graf, nestačí 

informácia v texte alebo tabuľke? Osobne tieto grafy nepovažujeme za potrebné a preferujeme 

zápis v texte alebo tabuľke. Dajte si tiež pozor, ak uvediete číselnú informáciu v tabuľke, 

neuvádzate ju duplicitne v texte (ak by sme napríklad prezentovali výsledok frekvenčnej 

analýzy premennej rodinný stav v tabuľke, neuviedli by sme ho v texte). Ako ste si mohli 

v príklade všimnúť, štatistické skratky a symboly uvádzame kurzívou.  

  



 
 

38 

4. Vnútorná konzistencia 
Meranie v psychológii prebieha prevažne prostredníctvom rôznych testov, dotazníkov alebo 

škál. Takýto spôsob merania je nutne spojený s určitou chybou merania, ktorá je spojená 

s presnosťou psychodiagnostických nástrojov. Posudzovaním toho, ako dobre tieto nástroje 

fungujú, sa zaoberá samostatná vedná disciplína psychometria. Psychometrické analýzy 

a postupy sú nad rámec tejto učebnice. Pre záujemcov odporúčame publikáciu ohľadom 

princípov psychodiagnostiky od Halamu (2011). Jedna z vecí, ktorá sa však bežne testuje 

a nájdete ju aj vo výskumných prácach, je reliabilita prípadne konkrétnejšie vnútorná 

konzistencia. Ak si vo výskumných štúdiách pozriete časť, v ktorej autori popisujú použité 

metodiky, stretnete sa s hodnotením reliability, vnútornej konzistencie (angl. internal 

consistency) alebo konkrétnymi pojmami ako Cronbachova alfa, α. V tejto časti si priblížime, 

čo to tá vnútorná konzistencia je a ako ju vypočítať v programe jamovi. 

Psychodiagnostické metodiky sú určené na meranie určitej konkrétnej (širšej či užšej) oblasti. 

Jednotlivé položky by teda rovnako mali merať túto oblasť. Či ju aj naozaj merajú, je otázkou 

validity psychodiagnostických nástrojov. Reliabilita nám na toto neposkytne odpoveď, no 

dozvieme sa, ako súdržne teda konzistentne tieto položky merajú. Je viacero spôsobov, ktorými 

sa reliabilita posudzuje – napríklad zisťujeme vzťah medzi výsledkami dvoch meraní v rôznom 

čase (test-retest reliabilita) alebo výsledkami paralelných metód. Keďže bežne nemáme tieto 

informácie dostupné, používame koeficienty vnútornej konzistencie, najčastejšie už spomenutú 

Cronbachovu alfu (Cronbach, 1951). Veľmi jednoducho povedané, koeficienty vnútornej 

konzistencie vyjadrujú mieru toho, ako silno spolu položky súvisia, aký silný je medzi 

položkami vzťah. Súvis medzi položkami je dôležitá vlastnosť pri metodikách, kde 

predpokladáme, že odpovede respondentov sú spôsobené meraným konštruktom na pozadí. Ak 

je vzťah medzi položkami nízky, je otázne, či je odpoveď na položky daná tým istým 

konštruktom, alebo ide o viacero konštruktov.  

Výpočet koeficientov vnútornej konzistencie je v jamovi jednoduchý. V karte Analyses 

zvolíme možnosť Factor a vyberieme Reliability Analysis. Tak ako v prípade deskriptívnej 

analýzy sa nám zobrazí stredové okno, v ktorom nastavíme analýzu. Podobne ako pri iných 

analýzach máme okienko, v ktorom máme na výber položky v našom súbore. Vyberieme 

položky, pri ktorých chceme zisťovať vnútornú konzistenciu a presunieme ich do okienka 

Items. Automaticky sa nám vo výsledkovej časti zobrazia výsledky. Pri výbere položiek si dajte 

pozor na to, čo robíte. Položky vyberajte tak, ako sú radené v metodike, napr. podľa 

vyhodnocovacieho kľúča – vkladajte tie položky, s ktorými ste počítali hrubé alebo priemerné 

skóre. Ak máte metodiku, ktorá má viacero samostatných faktorov, pri ktorých sa nedá 

vypočítať spoločný faktor, nedávajte všetky položky naraz! Príkladom môže byť v úvodných 

častiach spomenutý Inventár Veľkej Päťky 2. Tento osobnostný inventár má 5 samostatných 

faktorov: extraverzia, prívetivosť, svedomitosť, negatívna emocionalita a otvorenosť. Ak 

chcem zistiť vnútornú konzistenciu, musíme spraviť 5 samostatných analýz, pre každý faktor 

zvlášť. Nič také ako vnútorná konzistencia Inventára Veľkej Päťky 2 nie je, t.j. nemôžete dať 

analyzovať všetky položky naraz. V prípade, že má metodika aj reverzne skórované položky, 

vkladajte ich transformovanú podobu. Ak by ste sa pomýlili a vložili reverznú položku, jamovi 

vás na to upozorní, keď zistí negatívny vzťah medzi určitou položkou a zvyšnými položkami. 

Avšak, tak ako pri všetkom ostatnom, dajte si čas a venujte nastaveniu pozornosť. Pod 

okienkami s položkami si môžete všimnúť začiarkovacie políčka. V základom nastavení je 

zvolené len Cronbach’s α. V podstate je to všetko, čo potrebujeme. Obrázok 4.1 zobrazuje 
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nastavenie, v ktorom zisťujeme vnútornú konzistenciu domény Extraverzia. Do analýzy sme 

vložili už vopred transformované reverzné položky. 

Na výber máme McDonaldovu omegu ako druhý koeficient vnútornej konzistencie. Pre naše 

účely ale bežne postačuje Cronbachova alfa. Priamo v nastavení tejto analýzy si môžeme dať 

vypočítať priemer a štandardnú odchýlku, štatistiku pre položky, či vykresliť graf korelácií 

medzi položkami – tieto doplňujúce výsledky bežne nepotrebujeme. Ako je na Obrázku 4.1 

vidieť, nižšie sa nachádza záložka s názvom Reverse Scaled Items. Slúži na to, aby sme určili, 

ktoré z vybraných položiek sú reverzne skórované a majú byť transformované. Znovu pozor! 

Ak sme vybrali už raz transformované položky, nenastavujeme ich opätovnú transformáciu – 

vrátili by sme ich tým do pôvodného (surového) stavu. Posledná záložka Save nám umožňuje 

uložiť sumárne (hrubé) alebo priemerné skóre. Nevýhodou je, že dané skóre je viazané na 

analýzu, a ak ju odstránime, odstráni sa aj vypočítaná premenná z dát. Dá sa to obísť tak, že 

vypočítanú premennú skopírujeme do prázdneho stĺpca, no tento postup hodnotíme ako 

zbytočne náročný, preto odporúčame držať sa postupu uvedeného v kapitole 2.5. 

.  

Obrázok 4.1 Nastavenie výpočtu Cronbachovej alfy 

Výsledok pri základnom nastavení vyzerá úplne jednoducho (Obrázok 4.2).  
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Obrázok 4.2 Výsledok analýzy vnútornej konzistencie pri predvolenom nastavení 

Získali sme číslo 0,76 – ako však túto hodnotu interpretovať? Odpoveď nie je úplne 

jednoduchá. Hodnota Cronbachovej alfy je závislá od vzájomných vzťahov medzi položkami 

(čím silnejšie, tým lepšie) ale aj od počtu položiek – to znamená, že v prípade metodík s nízkym 

počtom položiek (napr. 4) môžeme získať nízku hodnotu napriek uspokojivým vzťahom medzi 

položkami. Naopak, v prípade veľkého počtu položiek môžeme získať vysokú hodnotu, napriek 

tomu, že medzi niektorými položkami je veľmi slabý vzťah. Interpretácia tiež závisí od toho, 

čo daná metodika meria. Pokiaľ ide o veľmi úzko vymedzenú oblasť, očakávame „vyššiu“ 

hodnotu alfy, v prípade širších oblastí, napr. osobnostné charakteristiky, nám postačuje aj 

„nižšia“ hodnota. Čo je to tá vyššia hodnota a čo nižšia? Vo všeobecnosti považujeme hodnoty 

Cronbachovej alfy väčšie ako 0,7 za dobré, 0,8 za veľmi dobré a 0,9 za výborné. Hodnoty pod 

0,7 sa pri metodikách s nízkym počtom položiek niekedy považujú sa dostačujúce, pokiaľ nie 

sú nižšie ako 0,6. Ide však len veľmi hrubé rozdelenie, ktoré na základe vyššie spomenutého 

ťažko uplatniť na každú oblasť psychológie. Niekedy autori používajú vyjadrenie 

akceptovateľná, prípadne vyhovujúca vnútorná konzistencia, na základe ich zhodnotenia 

faktorov vstupujúcich do výpočtu, t.j. počet položiek a šírka meranej oblasti. V našom prípade 

by sme rovnako zhodnotili vnútornú konzistenciu domény Extraverzia za vyhovujúcu. 

Zhodnotenie vnútornej konzistencie uvádzame najčastejšie pri popise použitých metodík. 

Napríklad: 

Pre meranie piatich osobnostných faktorov sme použili Inventár Veľkej Päťky 2 od 

autorov Halama et al. (2020). Tento inventár obsahuje celkovo 60 položiek, 12 pre 

každú doménu: Extraverzia, Prívetivosť, Svedomitosť, Negatívna emocionalita a 

Otvorenosť. Inventár má spoločný základ „Som niekto, kto...“ a pokračuje jednotlivými 

položkami, ktoré sú vo forme krátkych výrokov, napr. „je spoločenský, rád trávi čas s 

inými ľuďmi.“ alebo „sa niekedy správa nezodpovedne.“ Respondenti vyjadrujú mieru 

súhlasu s týmito položkami prostredníctvom 5-bodovej Likertovej škály, od „Veľmi 

nesúhlasím“ po „Veľmi súhlasím“. Vnútorná konzistencia jednotlivých domén je 

vyhovujúca: Extraverzia α = 0,76; Prívetivosť α = 0,78; Svedomitosť α = 0,84; 

Negatívna emocionalita α = 0,83 a Otvorenosť α = 0,80. 

Čo robiť v prípade, že nami použitá metodika vykazuje slabú vnútornú konzistenciu (α < 0,60)? 

Odpoveď záleží od toho, čo sme použili. Pokiaľ sme použili metodiku, ktorá je adaptovaná pre 

použitie u nás, a autori slovenskej adaptácie uvádzajú akceptovateľnú vnútornú konzistenciu, 

môžeme sa zamyslieť, či rozdiel môže spočívať v špecifikách nášho súboru, resp. populácie, na 

ktorú sme zamerali náš výskum. V takom prípade je vhodná určitá polemika v rámci diskusie 

zistení a najmä limitácií výskumu. Ak sme použili metodiku, ktorá nie je na Slovensku 

adaptovaná alebo sme si vytvorili vlastnú, môžeme sa pozrieť, či sú vzťahy medzi položkami 

slabé vo všeobecnosti, alebo je nejaká položka prípadne položky, ktorých prítomnosť výrazne 

znižuje vnútornú konzistenciu. Príčinou môže byť zlý preklad či nevhodná formulácia. 

V jamovi si v časti Item Statistics zvolíme možnosť Cronbach’s alpha (if item is dropped). Táto 

funkcia nám dá informáciu o tom, aká by bola Cronbachova alfa, keby vynecháme určitú 

položku. Vďaka tomu zistíme, či by odstránenie niektorej položky spôsobilo zvýšenie vnútornej 

konzistencie na prijateľnú úroveň. Pokiaľ by sme takú identifikovali, môžeme zvážiť jej 

nepoužitie pre výpočet hrubého alebo priemerného skóre (jej odstránenie). Pokiaľ však takúto 

položku neidentifikujeme, musíme sa zmieriť s nízkou vnútornou konzistenciou a hrať s tým, 

čo máme – pokračovať, no pri diskusii výsledkov zohľadniť tento fakt. V Obrázku 4.3 je 

zobrazený výsledok analýzy. Pri tejto 4 položkovej metodike sme zistili vzhľadom na nízky 
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počet položiek veľmi dobrú vnútornú konzistenciu α = 0,77. Výsledky doplňujúcej analýzy 

ukázali, že odstránenie ktorejkoľvek z prvých troch položiek by viedlo k zníženiu α – hovoríme, 

že tieto položky práve prispievajú vnútornej konzistencii. Odstránenie poslednej položky by 

viedlo k pomerne výraznému zvýšeniu α. V prípade, že by sme mali slabú vnútornú 

konzistenciu, stálo by za zváženie túto položku odstrániť, no v našom prípade to nie je potrebné, 

keďže v základe je naša α vyhovujúca. 

 

 
 

 Obrázok 4.3 Zmena Cronbachovej alfy v prípade odstránenia niektorej položky. 
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5. Inferenčná štatistika 
Zatiaľ sme si ukázali základy práce s dátovým súborom, základy práce v programe jamovi, 

základy deskriptívnej analýzy a povedali sme si niečo o vnútornej konzistencii. 

V nasledujúcich častiach však príde to „pravé čaro“ analýzy psychologických dát. 

V psychologických kvantitatívnych výskumoch mnohokrát očakávame súvis určitých 

premenných. Pojem súvis je veľmi široký, no práve preto vystihuje širokú paletu prípadov. 

Napríklad predpokladáme, že existuje vzťah medzi vekom a extraverziou alebo rozdiel 

v negatívnej emocionalite u mužov a žien, alebo efekt najvyššieho dosiahnutého vzdelania na 

schopnosť kritického myslenia. Aj keď ide o rôzne analýzy a rôzne pomenovania, na pozadí je 

stále hľadanie a potvrdzovanie súvisu medzi premennými. Naše očakávanie nás vedie k túžbe 

skúmať danú oblasť a overiť naše predpoklady. Tieto sa týkajú určitej populácie, teda celej 

množiny ľudí, ktorí spĺňajú nejaké podmienky, napr. populácia dospelých ľudí, prípadne užšie 

definované množiny, napr. populácia pracovníkov záchrannej služby, deti v predškolskom veku 

a iné. Keďže populácia obsahuje veľké množstvo ľudí a my nemáme možnosť zapojiť do 

výskumu každého jedného človeka, robíme výber, na základe ktorého vyvodzujeme závery pre 

celú cieľovú populáciu. Tento proces sa nazýva štatistická inferencia, z čoho pramení názov 

inferenčná štatistika. Našou snahou je teda nie len skúmať pomery v dátach, ale zistiť, či 

môžeme zistené pomery zovšeobecniť na celú populáciu. Týmto sa dostávame ku konceptu 

testovania signifikancie nulovej hypotézy, v skratke NHST z anglického null hypothesis 

significance testing. 

5.1 Testovanie signifikancie nulovej hypotézy 
Vedieť, či môžeme naše zistenie zovšeobecniť na cieľovú populáciu znie fajn a ak ste niekedy 

aspoň mierne prebehli výsledky v kvantitatívnych výskumných štúdiách, určite ste sa stretli 

s pojmami ako signifikancia, štatistická významnosť alebo anglicky significance. Práve tieto 

pojmy sú u začínajúcich študentov psychológie veľmi honosne vyslovované pri prezentáciách 

výskumných štúdií, ktoré spracovali, hoci pravdepodobne (skoro) nikto nevie, čo to vlastne 

znamená. Slovo významné alebo signifikantné v nás automaticky evokuje pocit, že je to niečo 

„významné“ teda dôležité. V mnohých prípadoch tomu tak je, v mnohých nie. Na to, aby sme 

vedeli, čo to znamená významnosť, musíme si najskôr priblížiť, čo je to nulová hypotéza a na 

čom je postavené testovanie jej signifikancie.  

Nulová hypotéza je ústredným pojmom v rámci NHST. Je to základný predpoklad, ktorý je 

vopred platný, pokiaľ dôkazy neukážu inak. Ako sme už spomínali, v našom výskume máme 

nejaké predpoklady, ktoré chceme overiť – tzv. výskumné hypotézy, nazývané aj meritórne 

alebo alternatívne hypotézy. Väčšinou sa tieto hypotézy týkajú prítomnosti súvisu medzi 

premennými. Nulová hypotéza má znenie v súvislosti s tým, aký test robíme ako aj s tým, ako 

znie naša výskumná hypotéza, takže ťažko hovoriť za všetky prípady, no zjednodušene, nulová 

hypotéza hovorí o neprítomnosti javu v populácii. Ak predpokladáme, že v populácii existuje 

vzťah medzi premennými, nulová hypotéza hovorí, že neexistuje. Ak hovoríme, že sa dve 

skupiny (napr. muži a ženy) líšia v miere nejakej vlastnosti, nulová hypotéza tvrdí, že sa nelíšia. 

Keďže je nulová hypotéza a priori platná, my sme tí, ktorí musia dokázať náš predpoklad. 

Z tohto dôvodu sa naše výskumné hypotézy nazývajú aj alternatívnymi – sú alternatívou 

voči nulovej hypotéze. Výnimkou sú výskumné hypotézy, ktoré sa rovnajú nulovej hypotéze – 

napríklad predpoklad neprítomnosti rozdielu medzi skupinami. Ak by sme chceli byť veľmi 

kritický, takéto hypotézy sú problematické v tom, že nulová hypotéza je vopred platná, na čo 

ju teda potvrdzovať? Ešte prísnejšie povedané, NHST nám konceptovo neumožňuje overiť 
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platnosť nulovej hypotézy, predpoklad o jej platnosti je zadefinovaný v rámci tohto konceptu 

(Field, 2018). Napriek tomu sa s takýmito výskumnými hypotézami môžeme stretnúť. 

Každá štatistická analýza, ktorú robíme má určitý číselný výsledok, ktorý nazývame koeficient. 

Nulová hypotéza pri mnohých testoch hovorí o tom, že tento koeficient sa v populácii rovná 0. 

Vďaka štatistickej analýze sa v našom výskume dopracujeme k nejakej hodnote koeficientu, 

ktorý sa nerovná nule. Toto zistenie je však platné len pre náš výskumný súbor a nehovorí 

o pomeroch v populácii – tam predsa a priori platí nulová hypotéza. V tomto momente vstupuje 

do hry štatistická významnosť, signifikancia. Veľmi zjednodušene ale výstižne povedané, 

vďaka nej vieme, aká je pravdepodobnosť získať v našom výskumnom súbore/výbere takúto 

hodnotu koeficientu ak v populácii platí nulová hypotéza. Táto definícia v sebe nesie dva 

kľúčové aspekty: výskumný súbor/výber a hodnotu koeficientu. Signifikancia výsledku je teda 

závislá od veľkosti koeficientu a počtu ľudí, na ktorých bola táto analýza vykonaná. Počet ľudí, 

na ktorých bola analýza vykonaná môžeme chápať ako nejakú váhu dôkazov. Ak by sme mali 

v dvoch prípadoch rovnakú hodnotu koeficientu ale výrazne iný počet ľudí, hodnota 

signifikancie by bola iná. A zas, ak by sme mali v dvoch prípadoch rovnaký počet ľudí, ale 

rozdielny koeficient, hodnota signifikancie by sa líšila. 

V rámci definovania štatistickej významnosti považujeme za dôležité upozorniť na dva 

nesprávne spôsoby chápania signifikancie, ktorými sa niekedy implicitne poníma. Štatistická 

významnosť výsledku nám v základe nehovorí o nejakej praktickej významnosti výsledku – 

predstavme si výskum, do ktorého sa zapojil veľký počet mužov a žien, napr. N > 300 z každej 

skupiny. V tomto výskume sme participantom ponúkli parené buchty (bol dostatok pre 

každého) a zistili sme, že muži zjedia v priemere 4,3 parenej buchty, zatiaľ čo ženy 4,2 parenej 

buchty. Prostredníctvom štatistickej analýzy, ktorú priblížime v inej časti učebnice, by sme 

zistili, že muži zjedia o jednu desatinu buchty viac (povedzme, že jedno naozaj malé sústo). Je 

tento rozdiel veľký, dôležitý, prakticky významný? Asi ani nie, no napriek tomu by nám mohol 

vyjsť ako štatisticky významný. Štatistická významnosť nám rovnako nehovorí o tom, aká je 

pravdepodobnosť získať daný výsledok v populácii – t.j. nevieme povedať, ako pravdepodobné 

je, že v populácii naozaj muži zjedia v priemere o 1/10 parenej buchty viac. Vďaka štatistickej 

významnosti vieme v podstate len to, ako veľmi pravdepodobné je pri počte našich 

respondentov získať hodnotu koeficientu, ktorú sme získali, ak v populácii platí nulová 

hypotéza. Pokiaľ je tá pravdepodobnosť veľmi nízka, naše uvažovanie pokračuje ďalej – určite 

platí nulová hypotéza, ak je takto nízka pravdepodobnosť získať takúto hodnotu koeficientu? 

V rámci takéhoto uvažovania sme pomerne asertívny a nepochybujeme o sebe, ale o platnosti 

nulovej hypotézy. Hovoríme, že nulovú hypotézu zamietame, no možno lepšie povedané, 

spochybňujeme jej platnosť a prijímame našu alternatívnu hypotézu, v ktorej sme predpokladali 

súvis medzi premennými. Naopak, ak je vysoká pravdepodobnosť získať nami zistenú nenulovú 

hodnotu koeficientu pri platnosti nulovej hypotézy, nepochybujeme o jej platnosti a zamietame 

našu alternatívnu hypotézu, v ktorej sme predpokladali súvis medzi premennými.  

Čo znamená malá pravdepodobnosť? Koľko je to? Takáto hodnota sa volá hladina významnosti 

alfa. Konvenčne zaužívanou hodnotou je 5 %, ale používajú sa aj prísnejšie hodnoty ako 1 % 

či 0,1 %. Určite ste sa už niekedy stretli s tabuľkou, v ktorej bola informácia p < 0,05, alebo p 

< 0,01, alebo p < 0,001, čo znamená, že výsledky boli signifikantné na úrovni 5 %, 1 % alebo 

0,1 %, a teda nasvedčovali, že autori výskumu pochybovali o platnosti nulovej hypotézy 

a prijímali stanovené alternatívne hypotézy (vlastné predpoklady). 
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5.2 Alternatívne hypotézy 
V predchádzajúcej časti sme spomenuli alternatívne hypotézy. Ide o hypotézy, ktoré hovoria o 

prítomnosti niečoho a sú v protismere nulovej hypotézy. Pri každej jednej analýze si ukážeme, 

akým spôsobom môžeme formulovať hypotézy, preto v tejto časti len krátko spomenieme dva 

druhy alternatívnych hypotéz: dvojstranná/dvojsmerná a jednostranná/jednosmerná hypotéza. 

Dvojstranná/dvojsmerná hypotéza (angl. two-tailed hypothesis) je hypotéza, v ktorej len 

vyjadrujeme predpoklad existencie súvisu medzi premennými – napríklad predpokladáme, že 

existuje korelácia medzi premennými alebo že sa porovnávané skupiny líšia. Pri 

jednostrannej/jednosmernej hypotéze (angl. one-tailed hypothesis) nepredpokladáme len súvis 

medzi premennými, no bližšie ho špecifikujeme – napríklad predpokladáme pozitívnu koreláciu 

medzi premennými alebo očakávame, ktorá z porovnávaných skupín má vyššiu hodnotu. 

Rozdiel medzi týmito hypotézami tkvie najmä vo výpočte štatistickej významnosti. Vráťme sa 

k príkladu ohľadom porovnania skonzumovaných parených buchiet u mužov a žien. Ak 

predpokladáme, že je rozdiel v množstve zjedených buchiet medzi mužmi a ženami, stanovili 

sme si dvojstrannú hypotézu. Dá sa povedať, že to hráme na obe strany – je nám „jedno“ (nie 

naozaj), či sú to muži alebo ženy, kto zje viac buchiet. Nulová hypotéza by tvrdila, že nie je 

rozdiel. Ak bude rozdiel pri našom počte participantov dostatočne veľký, získame hodnotu 

štatistickej významnosti, ktorá je nižšia ako alfa (konvenčne 5 %), čím pochybujeme o platnosti 

nulovej hypotézy, a teda prijímame našu alternatívnu hypotézu. V takomto prípade však 

rozdeľujeme nami zvolených 5 % na obe strany, a preto výsledok bude signifikantný, iba ak ide 

o hodnoty koeficientu menej pravdepodobné ako 2,5 % z každej strany. Ak by sme stanovili 

jednosmernú hypotézu, napr. že muži zjedia viac ako ženy, nulová hypotéza by stále tvrdila 

opak, v tomto prípade by to ale bolo, že „muži nezjedia viac“ – čo zahŕňa aj prípad, keď ženy 

zjedia viac. Ak by sme zistili, že ženy zjedia o dosť viac ako muži (je tam rozdiel), štatistická 

významnosť bude počítaná s touto otázkou na pozadí: aká je pravdepodobnosť získať takýto 

výsledok v našom súbore, ak v populácii nemá byť rozdiel alebo ženy zjedia viac? Ak ste 

pozorne čítali, pravdepodobnosť bude veľmi vysoká (blížiaca sa 100 %), keďže nulová 

hypotéza zahŕňa aj tento jav. Z hľadiska NHST by sme tvrdili, že nepochybujeme o nulovej 

hypotéze. Ale veď ten rozdiel tam je, nie? Áno je, no v opačnom smere ako sme očakávali, 

preto sa tým ďalej nezaoberáme. Ak by sme mali stanovenú dvojsmernú hypotézu, mohli sme 

potenciálne získať signifikantný výsledok. Z nášho pohľadu je to veľmi tvrdé zatváranie si očí 

pred niečím. Áno, musíme zamietnuť našu alternatívnu hypotézu, ale aspoň v diskusii sa 

môžeme vyjadriť, že tento rozdiel medzi skupinami (či všeobecne súvis medzi premennými) 

tam je, len v opačnom smere. Z tohto dôvodu niektorí autori (napr. Field, 2018) pri pojednaní 

o tejto problematike navrhujú používanie dvojsmerných hypotéz. Výhodou jednosmernej 

hypotézy je, že celú našu hladinu významnosti venujeme len na jednu stranu, a teda pokiaľ 

výsledok bude v smere nášho očakávania, môže byť signifikantný aj pri nižšej hodnote 

koeficientu, keďže nás zaujíma 5 % najextrémnejších hodnôt v porovnaní s 2,5 % pri 

dvojsmernej hypotéze. Ktorý typ alternatívnej hypotézy si vyberiete, je na vás. Pri koreláciách 

si ukážeme, že overenie jednosmernej hypotézy je v podstate rovnaké ako dvojsmernej, no líši 

sa výpočet štatistickej významnosti výsledku. Detailnejší popis nájdete v kapitole 6.1. 

5.3 Bivariačná a mutlivariačná štatistická analýza 
Existuje veľké množstvo spôsobov analýzy dát, ktoré pokrývajú širokú paletu výskumných 

cieľov zameraných na zistenie súvisu medzi premennými. V základe ich rozdeľujeme na dve 

kategórie – bivariačné a multivariačné analýzy. Bivariačná analýza pracuje s dvomi 

premennými – zisťujeme vzájomný súvis dvoch premenných. Ako už názov napovedá, 
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multivariačná analýza rieši vzájomný súvis troch a viacerých premenných. Výhodou 

bivariačnej analýzy je jej jednoduchosť – pre výpočet ako aj pre porozumenie. Jednoduchosť 

však nie je na škodu a v mnohých výskumoch bivariačná analýza sprevádza výsledky 

multivariačnej analýzy, ktorá je zložitejšia pre výpočet ako aj porozumenie, no dokáže 

komplexnejšie uchopiť skúmanú problematiku. Príkladom multivariačnej analýzy môže byť 

analýza kovariance, viacnásobná regresná analýza, exploratórna faktorová analýza a množstvo 

iných... V tejto učebnici sa budeme venovať len bivariačnej analýze a to konkrétne: 

• vzťah medzi dvomi premennými - korelácia 

• porovnávanie dvoch skupín 

• porovnávanie dvoch meraní  

• porovnávanie troch a viacerých skupín 

• chí-kvadrát teste pre súvis dvoch nominálnych premenných 

Poďme na to! 

5.4 Vzdialené hodnoty 
Pre zabezpečenie spoľahlivejších výsledkov je potrebné, aby sme sa pozreli na premenné aj 

z hľadiska vzdialených hodnôt. Pri korelačnej analýze ale aj porovnávacích testoch, ktoré 

pracujú s kontinuálnymi premennými, sa stretneme s pojmami parametrické a neparametrické 

testy. V kvantitatívnych výskumoch, ktoré pracujú s výskumnými súbormi rádovo v stovkách 

participantov, sa najčastejšie využívajú parametrické testy. Tieto testy pri výpočte koeficientu 

využívajú priemer a štandardnú odchýlku. Ako sme už v časti o mierach polohy a variability 

načrtli, tieto ukazovatele sú citlivé v prípade prítomnosti vzdialených hodnôt alebo narušenia 

normálnej distribúcie hodnôt premennej.  

Vzdialené hodnoty sú hodnoty premennej, ktoré sú výrazne vzdialené od ostatných hodnôt, t.j. 

hodnoty, ktoré sú výrazne väčšie alebo menšie ako väčšina hodnôt. Čo však znamená výrazne 

vzdialené? Jeden zo spôsobov definovania je vzdialenosť väčšia ako 1,5 násobok 

medzikvartilového rozpätia (IQR) od prvého kvartilu (Q1) v smere nižšie alebo vyššie od 

tretieho kvartilu (Q3). Podľa tohto pravidla môžeme v programe jamovi najrýchlejšie zistiť 

prítomnosť vzdialených hodnôt prostredníctvom krabičkového grafu (angl. boxplot). Ten si 

môžeme jednoducho vykresliť pri deskriptívnej analýze, kde v časti Plots zvolíme Boxplot teda 

„krabičkový graf“. Nájdeme v ňom vyobrazené medzikvartilové rozpätie prostredníctvom 

krabičky, v ktorej je vodorovná čiara znázorňujúca medián. Pod a nad krabičkou nájdeme 

kolmé úsečky. Spodná vyjadruje rozsah 1,5 násobku medzikvartilového rozpätia od prvého 

kvartilu nižšie (Q1 - 1,5*IQR), vrchná zas naopak, od tretieho kvartilu vyššie (Q3 + 1,5*IQR). 

V prípade, že sa v premennej nevyskytujú vzdialené hodnoty, sú tieto úsečky vyjadrením 

rozsahu od minimálnej hodnoty k maximálnej. Ak sa v premennej nachádzajú vzdialené 

hodnoty, budú v grafe zobrazené prostredníctvom bodov. Príklad krabičkového grafu pre 

premennú Extraverzia zobrazuje Obrázok 5.1. Ako je možné vidieť, v spodnej časti grafu sa 

nachádza jeden bod. Ide o hodnotu, ktorá je od hodnoty prvého kvartilu vzdialená viac ako 1,5 

násobok medzikvartilového rozpätia. Čo robiť s vzdialenými hodnotami? 
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Obrázok 5.1 Krabičkový graf s jednou vzdialenou hodnotou 

Odpoveď na túto otázku nie je jednoznačná. V prvom rade musíme posúdiť, či je táto hodnota 

reálne dosiahnuteľná. Takéto posúdenie robíme už na začiatku práce s premennými. Pozrieme 

si minimum a maximum a zhodnotíme, či premenné neobsahujú hodnoty, ktoré by nemali 

obsahovať. Príkladom môže byť vek. Ak respondenti vypĺňali online dotazník, mohlo sa stať, 

že náhodou preťukli a uviedli vek 256 rokov. Pri takejto hodnote je jasné, že je nereálna. 

Najlepšie je hodnotu odstrániť, a tak jeden z respondentov nebude mať uvedený vek. Môže sa 

stať, že sa vám do výskumu zapojí niekto, kto nie je z vašej plánovanej cieľovej populácie. Ak 

sa zameriavate na neskorú dospelosť, no zapojí sa niekto, kto má 18 rokov, treba ho odstrániť 

úplne, pretože nespadá do vami stanovenej cieľovej populácie. Iným príkladom nereálnej 

hodnoty môže byť chyba na vašej strane. Rovnako ako respondentovi, tak aj vám sa mohlo stať, 

že ste nechtiac ťukli do klávesnice, a prepísali ste hodnotu (na toto veľký pozor!). V prípade, 

že viete dohľadať originálnu odpoveď, môžete tak spraviť, ak nie, hodnotu vymažte. Ak sú 

hodnoty reálne dosiahnuteľné, postup je zložitejší. Musíme sa rozhodnúť, čo s takýmito 

hodnotami spraviť. Jeden pohľad môže byť, že tieto hodnoty sa môžu v populácii vyskytnúť, 

a preto je otázne, či máme takéto hodnoty odstrániť. Na druhú stranu, parametrické testy sú 

citlivé na vzdialené hodnoty, a preto výsledky môžu byť týmito hodnotami posunuté. Pokiaľ 

máme vysoký počet respondentov a odstránenie pár hodnôt „nepocítime“, môžeme tieto 

hodnoty odstrániť alebo odfiltrovať. Pokiaľ máme nízky počet respondentov (napr. 20), 

odstránenie zopár hodnôt je citeľné. V takomto prípade môžeme voliť neparametrické testy, pre 

ktoré odľahlé hodnoty nie sú problémom a pracovať s celým súborom. 

Pred každou analýzou si môžeme nastaviť filter, tak aby sme v analyzovaných premenných 

alebo skupinách vyfiltrovali vzdialené hodnoty. V jamovi na to môžeme využiť šikovnú 

zabudovanú funkciu ABSIQR(). Táto funkcia vypočíta vzdialenosť jednotlivých hodnôt od 

„krabičky“ v jednotkách medzikvartilového rozpätia. Ak sa hodnota v danom riadku nachádza 

v rozmedzí medzikvartilového rozpätia, funkcia vráti hodnotu 0, ak sa nachádza mimo, vráti 

hodnotu vzdialenosti v IQR a v absolútnej hodnote. Vďaka tomu vieme nastaviť odfiltrovanie 

hodnôt, ktorých absolútna vzdialenosť od krabičky je väčšia ako 1,5. Ak pracujeme s viacerými 

premennými, napríklad riešime koreláciu medzi dvomi premennými, zadáme príkaz pre obe 

premenné v jednom filtri. Nastavenie filtra pre premenné Extraverzia a Prívetivosť 

zobrazujeme v obrázku 5.2. Keďže filter ponechá hodnoty, ktoré spĺňajú podmienku, musíme 

ho nastaviť tak, aby hodnota vrátená funkciou ABSIQR bola menšia ako 1,5 (ponecháme len 

hodnoty, ktoré nie sú vzdialené).  
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Obrázok 5.2 Nastavenie filtra pre ponechanie hodnôt, ktoré nie sú vzdialené v premenných 

Extraverzia a Prívetivosť 

V prípade, keď budeme porovnávať dve alebo viac skupín, je potrebné, aby sme odfiltrovali 

vzdialené hodnoty pre jednotlivé skupiny zvlášť. Určitá hodnota nemusí byť vzdialenou, ak 

berieme súbor ako celok, no môže byť vzdialenou v konkrétnej skupine. V takomto prípade si 

najskôr musíme vytvoriť nové vypočítané premenné (Computed variable, kap. 2.3). Pri výpočte 

využijeme logickú funkciu IF(). Vďaka nej vieme nastaviť, že novovytvorená premenná má 

obsahovať len hodnoty pôvodnej premennej z vybranej skupiny. Pri tejto funkcii musíme 

najskôr zadať podmienku, a potom to, čo sa má stať, ak je podmienka naplnená a ak nie je 

naplnená: IF([podmienka], [čo ak je naplnená], [čo ak nie je naplnená]). Ak by sme chceli 

preniesť do novej premennej len hodnoty premennej Extraverzia u mužov, nastavenie bude 

vyzerať takto: IF(pohlavie == 1, Extraverzia). V tomto prípade sme neuviedli, čo sa má stať, 

ak podmienka nie je naplnená – nespraví sa nič, bunka v danom riadku zostane prázdna, a to 

presne chceme. Potom spravíme tento úkon pre druhú skupinu – vytvoríme novú vypočítanú 

premennú, v ktorej zmeníme príkaz: IF(pohlavie == 2, Extraverzia). Pri nastavovaní príkazu si 

môžete pomôcť a názvy premenných vložiť cez tlačidlo . V našom prípade sme si vytvorili 

dve premenné, „Extraverzia muži“, ktorá nesie hodnoty u mužov a „Extraverzia ženy“, ktorá 

nesie hodnoty u žien. Následne môžeme nastaviť filter s funkciou ABSIQR() pre obe premenné. 

Príklad uvádzame v Obrázku 5.3. Nezabudnite, že takto vytvorené premenné nám slúžia len pre 

nastavenie filtra a pri analýze už budeme pracovať s originálnou premennou. 

 

Obrázok 5.3 Nastavenie filtra pre ponechanie hodnôt, ktoré nie sú vzdialené v premennej 

Extraverzia, samostatne pre mužov a ženy  

Po nastavení sa vyfiltrujú respondenti, ktorí mali vzhľadom na ich skupinu odľahlú hodnotu 

v danej premennej. Ak si dáte znovu vykresliť krabičkový graf, môže sa stať, že pribudnú nové 

hodnoty, ktoré sú označené bodom, teda sú vzdialené. Odstránením niektorých hodnôt sa 

zmenili pomery v dátach a môže sa stať, že hodnoty, ktoré pôvodne neboli vzdialené sa po 

odfiltrovaní stanú odľahlými. V takomto prípade už neopakujeme čistenie a pracujeme so 

súborom tak, ako je, t.j. čistenie premenných od odľahlých hodnôt robíme len raz.  

Pri riešení odľahlých hodnôt môžete vopred identifikovať takéto hodnoty pre všetky analýzy, 

ktoré budete robiť a odstrániť respondentov ako takých. Získate tak finálny súbor respondentov, 

s ktorým budete robiť ďalšie analýzy. Na druhú stranu, najmä v prípade väčšieho počtu hypotéz 

a premenných vstupujúcich do analýz, tak môžete prísť o väčší počet respondentov. 

Domnievame sa, že ak má respondent odľahlú hodnotu pri jednej z viacerých premenných, je 

zbytočné odstrániť ho zo súboru. Ideálnejšie je pred každou analýzou samostatne analyzovať 

vzdialené hodnoty v konkrétnych premenných, vyfiltrovať ich a pokračovať analýzou. Po 
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dokončení hlavnej analýzy (napr. po overení hypotézy), nezabudnite filter vymazať, prípadne 

ho prerobte pre účely ďalšej analýzy. 

Znovu však opakujeme, že problematika odstraňovania vzdialených hodnôt, najmä v sociálno-

psychologickom výskume, je komplikovaná. Príkladom je už práve spomenutá osoba s veľmi 

nízkou mierou extraverzie (Obrázok 5.1). Na jednu stranu by sme mohli túto osobu pri práci s 

premennou Extraverzia vyfiltrovať, pretože je vzdialená, no rovnako môžeme viesť polemiku, 

že táto osoba nie je nereálna a naozaj v populácii existujú ľudia s veľmi nízkou extraverziou. 

Čo ak by sme mali omnoho vyšší počet respondentov v našom výskume? Ak by sme pracovali 

nie v stovkách, ale tisícoch či desaťtisícoch, je možné, že by táto hodnota bola frekventovanejšia 

a nebola by vzdialenou. Vyfiltrovaním tejto osoby tak odstránime niekoho, kto reprezentuje 

populáciu. Pre účely ďalších výpočtov pracujeme v tejto učebnici so všetkými respondentmi – 

neodstraňujeme vzdialené hodnoty. 

5.5 Testovanie normality distribúcie premennej 
Po odstránení odľahlých hodnôt pokračujeme Pre posúdenie, či je premenná normálne 

distribuovaná, môžeme zvoliť viaceré štatistické testy. Jeden z nich, Shapiro-Wilkov, je priamo 

implementovaný v programe jamovi. Tento test nám, podobne ako iné inferenčné štatistické 

testy, vráti koeficient, ktorý však neinterpretujeme, no sledujeme jeho štatistickú významnosť. 

Nulová hypotéza tohto testu je, že premenná je v populácii normálne distribuovaná. Vypočítaná 

hodnota štatistickej významnosti nám teda hovorí, aká je pravdepodobnosť získať distribúciu, 

ktorú máme my, pri našom počte respondentov, v prípade že platí nulová hypotéza. Ak je 

hodnota signifikancie nízka (p < 0,05), berieme to tak, že nulová hypotéza neplatí a premenná 

nie je normálne distribuovaná. Takéto zhodnotenie je problematické. Dôvod sme si už 

spomenuli: výpočet signifikancie je závislý aj od počtu respondentov, na ktorých je analýza 

uskutočnená. Čím je počet vyšší, tým nižšia hodnota štatistickej významnosti nám vyjde. Pokiaľ 

máme vysoký počet respondentov, môže sa stať, že aj pri dostatočne normálne distribuovanej 

premennej získame štatisticky významný výsledok a mali by sme voliť neparametrický test. 

Naopak, ak máme veľmi nízky počet respondentov, Shapiro-Wilkov test môže vyjsť 

nesignifikantný napriek tomu, že distribúcia testovanej premennej nie je ideálna pre použitie 

parametrického testu. Z tohto dôvodu je vhodné na normalitu distribúcie nahliadať 

komplexnejšie prostredníctvom viacerých dôkazov. Osobne sa najviac prikláňame 

k hodnoteniu tzv. quantile-quantile grafov, ktoré sa zaužívané nazývajú Q-Q grafy či anglicky 

Q-Q plots, no môžeme sa zamerať aj na hodnoty šikmosti (angl. skewness) a špicatosti (angl. 

kurtosis), ktoré nás informujú o povahe distribúcie, alebo si distribúciu môžeme nechať 

graficky zobraziť prostredníctvom histogramu.  

Spôsob, akým sú hodnoty premennej distribuované, vieme číselne vyjadriť prostredníctvom 

spomenutých koeficientov šikmosti a špicatosti. Šikmosť nám hovorí o tom, či sú hodnoty 

rovnomerne distribuované z oboch strán, od minimálnej hodnoty k priemeru a od priemeru 

k maximálnej hodnote. Špicatosť nám jednoducho vypovedá o tom, aký je rozdiel v hustote 

najčastejšie zastúpených hodnôt v porovnaní s ostatnými menej zastúpenými hodnotami, inak 

povedané o hrúbke krajov (chvostov) distribúcie. Pri posudzovaní normality distribúcie sa 

primárne zameriavame na šikmosť, no ideálne je, aby oba koeficienty boli čo najbližšie k nule, 

ideálne medzi -0,5 a 0,5, no akceptovateľné je aj rozmedzie -1 až 1.  

Prakticky si ukážeme zhodnotenie normálnej distribúcie pri premenných, s ktorými budeme 

neskôr pracovať pri korelačnej analýze. V jamovi si kartu Analyses zvolíme možnosť 
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Exploration a ďalej Descriptives. Nastavenie tejto analýzy sme preberali v časti o deskriptívnej 

analýze. Teraz sa zameriame na šikmosť, špicatosť distribúcie, overenie normality 

prostredníctvom Shapiro-Wilkovho testu a v časti Plots si zapneme Histogram, Density a Q-Q. 

Zapneme si tiež možnosť N, aby sme zistili počet respondentov, ktorí vstupujú do analýzy. Pre 

prehľadnosť výsledkov sme zatiaľ ostatné možnosti vypli. Do okienka Variables si prenesieme 

premenné, ktoré chceme analyzovať a získame požadované výsledky. Nastavenie pre tento 

príklad zobrazujeme v Obrázku 5.4.  

 

Obrázok 5.4 Nastavenie analýzy pre posúdenie normality distribúcie premennej 

Získame tabuľku, v ktorej budú výsledky pre každú premennú (Obrázok 5.5). 

 

Obrázok 5.5 Výsledok analýzy šikmosti, strmosti a Shapiro-Wilkovho testu 

Postupne zhodnotíme šikmosť, strmosť a signifikanciu Shapiro-Wilkovho testu. Pri premennej 

Extraverzia sme zistili hodnotu šikmosti 0,11 a hodnotu špicatosti -0,10. Obe tieto hodnoty sú 

pomerne blízke nule a nachádzajú sa v spomenutom pásme -0,5 až 0,5. Podobne je tomu aj 

v prípade premennej Prívetivosť. Pri Shapiro-Wilkovom teste sa zameriavame na hodnotu 
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signifikancie, ktorá sa zaužívane označuje ako p. Ako sme v úvode tejto podkapitoly spomenuli, 

ak získame hodnotu nižšiu ako 0,05, pochybujeme o tom, že je dodržaná normálna distribúcia 

premennej. Pri oboch premenných je táto hodnota nižšia ako 0,05. Ak by sme vyvodili záver 

len na základe tohto ukazovateľa, prišli by sme k záveru, že normálna distribúcie nie je 

dodržaná a volili by sme neparametrický test. Avšak hodnota signifikancie môže byť 

zapríčinená nie tak problematickou distribúciou hodnôt tejto premennej ale vysokým počtom 

respondentov (N = 281), ktorí vstupujú do tejto analýzy. Test je „citlivý“ aj na prakticky 

zanedbateľný rozdiel od normálnej distribúcie, preto vyjde štatisticky významný pri p < 0,05. 

Distribúciu hodnôt premenných máme graficky vyobrazenú prostredníctvom histogramov 

s vykreslenou krivkou hustoty dát. Tieto grafy zobrazujeme v Obrázku 5.6. 

  

Obrázok 5.6 Histogram pre vybrané premenné 

Histogram nám zobrazuje frekvenciu skupín susediacich hodnôt. Ako na prvý pohľad vidíme, 

krivky pri jednotlivých premenných sa veľmi nepodobajú na Gausovu krivku normálnej 

distribúcie (Obrázok 3.1). Napriek tomu vidíme podobný trend. Hodnoty okolo priemeru sú 

zastúpené najčastejšie a čím ďalej od priemeru ideme, tým klesá frekvencia výskytu týchto 

hodnôt. Tento trend je pomerne dobre viditeľný pri premennej Extraverzia. Pri premennej 

Prívetivosť je širšie pásmo hodnôt, ktoré majú veľmi podobnú frekvenciu výskytu. Histogram 

je šikovný pomocník pre znázornenie distribúcie hodnôt, avšak pre posúdenie normality 

distribúcie je nápomocnejší Q-Q graf. Tieto grafy obsahujú priamku, ktorá vyjadruje normálnu 

distribúciu a jednotlivé body (krúžky) znázorňujú hodnoty jednotlivých respondentov. 

Posúdenie týchto grafov je naozaj jednoduché. Pravidlom je, aby skoro všetky body boli 

pretnuté priamkou, prípadne ležali v jej tesnej blízkosti. Grafy pre obe premenné zobrazujeme 

v Obrázku 5.7. Ako je možné vidieť, naozaj väčšina týchto bodov je pretnutá priamkou. V praxi 

sa môžete stretnúť s tým, že na začiatku a konci môžu byť niektoré body vzdialenejšie od 

priamky, avšak pokiaľ ich je len zopár, nie je to problém. Problém je v prípade, že sa viaceré 

body vzďaľujú od priamky a vzniká tak oblý rad, môžeme ho nazvať „bruškom“, prípadne sa 

okolo priamky tvorí z týchto bodov krivka, ktorá sa striedavo z jednej a druhej strany vzďaľuje 

od priamky. Pokiaľ je tento odklon graficky výrazný, môžeme zvážiť použitie 

neparametrického testu.  



 
 

51 

 

Extraverzia 
 

Prívetivosť 

Obrázok 5.7 Q-Q grafy pre vybrané premenné 

Aký je teda záver? Štatisticky významný Shapiro-Wilkov test naznačuje, že dáta nie sú 

normálne distribuované, avšak tento výsledok môže byť spôsobený vysokým počtom 

respondentov. Dôkazy založené na hodnote šikmosti v spojitosti so zhodnotením Q-Q grafov 

poukazujú na to, že môžeme použiť parametrický test. 

Takéto posúdenie robíme aj v prípade porovnávania dvoch alebo viacerých skupín, ktorým sa 

budeme venovať v kapitole 7. Pri týchto testoch však posudzujeme normalitu testovanej 

premennej samostatne v jednotlivých skupinách. Stačí, ak pri analýze vložíme do okienka Split 

by premennú, ktorá definuje porovnávané skupiny.  
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6. Korelačná analýza 
Korelačná analýza slúži pre zisťovanie vzťahov medzi dvomi premennými meranými na 

kontinuálnej, prípadne ordinálnej úrovni. Je asi najčastejšie využívanou analýzou, či už 

v záverečných prácach alebo kvantitatívnych výskumných štúdiách. Korelačnú analýzu 

používame v prípade, ak očakávame, že s narastajúcou hodnotou jednej premennej bude 

narastať alebo klesať hodnota druhej premennej. Výsledkom korelačnej analýzy je korelačný 

koeficient a jeho štatistická významnosť. Korelačný koeficient vyjadruje tesnosť vzťahu dvoch 

premenných, no častejšie je používané vyjadrenie sila vzťahu. Najčastejšie používaným 

korelačným koeficientom je Pearsonov, no používa sa aj Spearmanov a Kendalov korelačný 

koeficient. Výber koeficientu súvisí s povahou premenných. Pearsonov korelačný koeficient je 

parametrický. Predpokladom pre použitie tohto koeficientu je normálna distribúcia oboch 

premenných, ktoré dávame do vzťahu ako aj to, že obe premenné majú byť merané na 

kontinuálnej úrovni. V prípade, že jedna alebo obe premenné nespĺňajú podmienku normálnej 

distribúcie alebo kontinuálnej úrovne merania, používame neparametrické koeficienty – 

Spearmanov alebo Kendalov. Pokiaľ predpokladáme normálnu distribúciu meraných 

kontinuálnych premenných v populácii a máme dostatočne veľký počet ľudí, na ktorých 

analýzu uskutočňujeme (napr. viac ako 100), môžeme si výber zjednodušiť a použiť Pearsonov 

korelačný koeficient. V takomto prípade je vysoká pravdepodobnosť, že naše dáta sú 

dostatočne podobné normálnej distribúcii. Pokiaľ máme jednu alebo obe premenné merané na 

ordinálnej úrovni, alebo sa nám nepotvrdila normálna distribúcia použitých premenných, 

prípadne máme nízky počet ľudí vstupujúcich do analýzy (napr. menej ako 30), vyberieme 

neparametrický korelačný koeficient. Teraz si ukážeme, ako by mali vyzerať hypotézy týkajúce 

sa korelácií, ako ich štatisticky vyhodnotiť a ako výsledky zapísať a interpretovať. 

Vo všeobecnosti stanovujeme hypotézu ako predpoklad o prítomnosti štatisticky významného 

vzťahu: 

H: Predpokladáme štatisticky významný vzťah medzi X a Y. 

Pri stanovení hypotézy môžeme no nemusíme používať explicitné vyjadrenie predpokladania, 

čiže hypotéza môže znieť aj:  

H: Existuje štatisticky významný vzťah medzi X a Y.  

Dôležité je, aby sme explicitne zapísali, čo očakávame a medzi ktorými premennými. 

Nulová hypotéza v tomto prípade hovorí o neprítomnosti vzťahu a jej znenie by bolo: 

H0: Neexistuje vzťah medzi X a Y. 

 

V oboch prípadoch sme stanovili dvojsmernú hypotézu. Ako sme v predchádzajúcej časti 

uviedli, pri jednosmernej hypotéze je špecifikovaný aj smer vzťahu. Pokiaľ očakávame priamu 

úmeru, teda že so zvyšujúcou sa hodnotou jednej premennej sa zvyšuje hodnota druhej 

premennej, môže našu hypotézu zapísať takto:  

H: Predpokladáme štatisticky významný pozitívny vzťah medzi X a Y. 

Nulová hypotéza má v tomto prípade znenie: 

H0: X a Y nemajú medzi sebou pozitívny vzťah. 
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V prípade nepriamej úmery, teda že so zvyšujúcou sa hodnotou jednej premennej klesá hodnota 

druhej premennej, uvádzame negatívny: 

H: Predpokladáme štatisticky významný negatívny vzťah medzi X a Y.  

Nulová hypotéza má v tomto prípade znenie: 

H0: X a Y nemajú medzi sebou negatívny vzťah. 

Pre praktickú ukážku zameníme X a Y za niečo špecifické a ukážeme si ako takéto hypotézy 

analyzovať a interpretovať. Vo vašich záverečných prácach nezabúdajte na to, že hypotézy 

majú byť pri ich formulácii odôvodnené. Vaše hypotézy uvádzate vo výskumnej časti práce 

a mali by nasledovať za výskumným problémom a cieľmi. Pokúste sa pri ich formulácii 

explicitne pripomenúť čitateľovi, na základe čoho máte také očakávanie. Pre ukážku v tejto 

učebnici však uvádzame len hypotézy, ktoré si následne vyhodnotíme. 

H1: Predpokladáme štatisticky významný vzťah medzi extraverziou a prežívaným 

šťastím. 

H2: Prívetivosť a prežívané šťastie budú spolu štatisticky významne, pozitívne 

korelovať. 

H3: Predpokladáme, že negatívna emocionalita bude štatisticky významne, negatívne 

korelovať s prežívaným šťastím. 

H4:  Najvyššie dosiahnuté vzdelanie bude štatisticky významne a pozitívne súvisieť so 

svedomitosťou. 

Ako ste si mohli všimnúť, prvá hypotéza je dvojsmerná a ostatné sú jednosmerné. Ak chceme 

analyzovať dáta a potvrdiť či vyvrátiť nami stanovené, meritórne/alternatívne hypotézy, 

musíme najskôr zvoliť vhodný korelačný koeficient. V prípade prvých troch hypotéz pracujeme 

s premennými, ktoré sú kontinuálne. Vzhľadom na počet respondentov v našom dátovom 

súbore a na fakt, že tieto premenné by mali byť v našej cieľovej populácii približne normálne 

distribuované, mohli by sme zvoliť Pearsonov korelačný koeficient. Pri poslednej hypotéze 

pracujeme aj s ordinálnou premennou, preto by bolo vhodné použiť Spearmanov korelačný 

koeficient. Ak chceme pristúpiť k výberu koeficientu zodpovednejšie, mali by sme zhodnotiť 

normálnu distribúciu týchto premenných (podkapitola 5.5).   

6.1 Korelačná analýza v programe jamovi 
Korelačnú analýzu v jamovi nájdeme v záložke Analyses, kde zvolíme možnosť Regression 

a Correlation Matrix. Základné okno obsahuje dve okienka. Ako zvyčajne, v jednom nájdeme 

premenné v našom súbore a do druhého okienka presunieme premenné, medzi ktorými chceme 

zisťovať vzťah. Ikonky v rohu tohto okienka poukazujú na to, že môžeme vkladať kontinuálne 

a ordinálne premenné. Pod týmito okienkami nájdeme ďalšie nastavenia, ktoré zobrazujeme 

v Obrázku 6.1.  
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Obrázok 6.1 Základné nastavenie pri korelačnej analýze  

V časti Correlation Coefficients volíme korelačný koeficient, pričom môžeme zvoliť aj viacero 

naraz. V tejto učebnici budeme pracovať s Pearsonovým a Spearmanovým korelačným 

koeficientom. V ďalšej časti Hypothesis nastavujeme naše očakávanie ohľadom vzťahu. 

Možnosť Correlated vyjadruje dvojstrannú hypotézu – očakávame len vzťah bez určenia 

smeru. Ďalšie dve možnosti Correlated positively a Correlated negatively vyjadrujú 

jednostrannú hypotézu, očakávanie pozitívnej alebo negatívnej korelácie. Toto nastavenie má 

za cieľ uľahčenie výpočtu štatistickej významnosti výsledku. Vyskytuje sa aj pri niektorých 

ďalších bivariačných testoch. V praxi však niekedy študentom skôr komplikuje situáciu ako 

pomáha.  

Prvý problém je v nepozornosti – pokiaľ overujeme viacero hypotéz, ktoré majú rôzne smery, 

môže sa stať, že ponecháme nesprávne nastavenie. Vysvetlíme, prečo je to problém. V prípade, 

že by sme pri overení hypotézy o prítomnosti negatívnej korelácie medzi premennými 

ponechali nastavenie Correlated positively, významnosť výsledku by bola počítaná pre 

alternatívnu hypotézu v opačnom smere, ako sme mienili. Vypočítaná sila vzťahu bude rovnaká 

pri všetkých nastaveniach, líšiť sa bude hodnota štatistickej významnosti. 

Povedzme, že by bol vzťah medzi premennými -0,30 – neskôr uvádzame, že ide o stredne silný 

negatívny vzťah. V tomto hypotetickom príklade nám pri nastavení Correlated (dvojsmerná 

hypotéza) vyjde hodnota signifikancie nižšia ako 0,001. Ak by sme chceli zistiť hodnotu 

signifikancie pre jednosmerný test, stačí túto hodnotu vydeliť dvomi, čím sa rovnako 

dopracujeme k zaokrúhlenej hodnote p < 0,001. Túto hodnotu získame aj pri nastavení 

Correlated negatively. Získali by sme teda štatisticky významný výsledok a našu hypotézu 

potvrdili. 

Ak by sme nesprávne nastavili Correlated positively, získaná hodnota by bola po zaokrúhlení 

p = 1, čo je rozhodne viac ako 0,05, preto by sme pri nekritickom hodnotení výsledku 

konštatovali štatisticky nevýznamný výsledok a našu hypotézu nesprávne nepotvrdili. Možno 

sa pýtate „prečo?“ Pripomeňme si informácie, ktoré sme uviedli v kapitolách 5.1 a 5.2. 

Výsledok dvojsmerného testu signifikancie nám povie, aká je pravdepodobnosť získať takúto 

koreláciu pri našich dátach, ak by v populácii korelácia nemala byť – pravdepodobnosť je teda 

menej ako 0,1 % (p < 0,001). Pri správnom nastavení pre tento príklad (Correlated negatively) 

nám signifikancia povie, aká je pravdepodobnosť získať takúto hodnotu pri platnosti nulovej 

hypotézy „vzťah nie je negatívny“ – a opäť, táto pravdepodobnosť je menej ako 0,1 % (p < 

0,001). Nesprávne nastavenie (Correlated positively) nám dá výsledok, aká je pravdepodobnosť 
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získať takúto hodnotu, ak v populácii „vzťah nie je pozitívny“ – hodnota -0,30 rozhodne nie je 

pozitívna, a preto je pravdepodobnosť blízka 100 % (p = 1). 

Druhý problém nastáva v ojedinelej situácii, keď sme si stanovili jednosmernú hypotézu, napr. 

predpokladali sme negatívny vzťah, no „z nejakého“ dôvodu je realita opačná a vzťah medzi 

premennými je pozitívny (a má aj svoju vecnú významnosť). Upozorňujeme, že sme nespravili 

metodologickú chybu alebo nesprávne výpočty – proste vzťah medzi premennými je v 

populácii opačný, ako sme očakávali. V takomto prípade by nám opäť pri jednosmernom teste 

signifikancie (Correlated negatively) vyšla signifikancia p > 0,05, pričom hypotéza by sa nám 

nepotvrdila. Problém však nastáva pri ďalšej interpretácii vzťahu. Ak by sme zostali pri 

jednosmernom testovaní, mohlo by nám ujsť dôležité zistenie, že síce sa hypotéza nepotvrdila 

a vzťah nie je negatívny, no práve naopak – je pozitívny a k tomu štatisticky významný (p < 

0,05) z hľadiska dvojsmerného testu signifikancie. Z tohto dôvodu odporúčame pri overovaní 

jednosmernej hypotézy začať dvojsmerným testom a ak je výsledok v smere hypotézy (napr. 

hypotéza o negatívnom vzťahu a identifikovaný negatívny vzťah), prepnúť na jednosmerný 

test. Ak by výsledok bol v opačnom smere (napr. hypotéza o negatívnom vzťahu a 

identifikovaný pozitívny vzťah), ponechať a reportovať signifikanciu pre dvojsmernú 

hypotézu. Pre lepší prehľad uvádzame nasledujúci diagram. 

 

V časti Additional Options môžeme zvoliť ďalšie informácie, ktoré chceme zobraziť. V základe 

zvolené Report significance vyjadruje, že chceme mať uvedenú hodnotu štatistickej 

významnosti – áno chceme, je to pre nás dôležitá informácia. Flag significant correlations nám 

prostredníctvom hviezdičiek označí hodnoty korelačných koeficientov, ktoré sú signifikantné 

na úrovni p < 0,05 (*), p < 0,01 (**) a p < 0,001 (***). Je to praktické v prípade, že sme naraz 

zvolili viacero premenných, kedy nám jamovi automaticky vypočíta vzájomné vzťahy medzi 

všetkými zvolenými premennými. V prípade dvoch premenných ide o jednu koreláciu. 

V prípade 5 premenných už získame 10 korelačných koeficientov a hodí sa nám aj takéto 

zvýraznenie. Ak zvolíme N, získame informáciu o počte ľudí, na ktorých bola analýza 

vykonaná. Táto informácia sa zíde najmä v prípade, že niektorí respondenti majú chýbajúce 

údaje alebo máte nastavené nejaké filtrovanie dát (napr. odstránené vzdialené hodnoty). 

Možnosť Confidence intervals nám vypočíta konfidenčné intervaly korelačných koeficientov, 

toto je však téma nad rámec tejto učebnice. V poslednej časti Plots si môžeme nechať graficky 

znázorniť korelačnú maticu. Takéto grafické znázornenie však v záverečných prácach 

neuvádzame a nebudeme sa mu ani venovať.  
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Prakticky si ukážeme overenie hypotézy H1. V prípade oboch premenných sme potvrdili 

normálnu distribúciu premenných, preto volíme Pearsonov korelačný koeficient r. Otvoríme si 

korelačnú analýzu a do okienka presunieme premennú Extraverzia a SHS_priemer. Nastavenie 

Hypothesis necháme na Correlated, keďže ide o dvojsmernú hypotézu. Výsledok, ktorý sa nám 

zobrazí, nájdete v Obrázku 6.2. 

 

Obrázok 6.2 Výsledok korelačnej analýzy pre H1 

Výsledok pre zhodnotenie prvej hypotézy máme už zobrazený v Obrázku 6.2. V prvom rade 

sledujeme hodnotu štatistickej významnosti p-value. V tomto prípade sme zistili, že p < 0,001 

(ak by sme zmenili nastavenia, môžeme sa dozvedieť aj konkrétnejšiu hodnotu, v tomto prípade 

je hodnota p dokonca menšia ako jedna milióntina). Úplne nám však postačuje informácia, 

ktorú máme v základe. Čo vďaka tomu vieme? Naša alternatívna hypotéza hovorí o prítomnosti 

vzťahu medzi extraverziou a prežívaným šťastím. Nulová hypotéza v tomto prípade hovorí, že 

v populácii tento vzťah nie je – korelačný koeficient by mal byť rovný 0. Hodnota štatistickej 

významnosti nám hovorí o tom, aká je pravdepodobnosť získať hodnotu korelačného 

koeficientu 0,48, pri 281 respondentoch, ak v populácii nie je vzťah medzi premennými. 

Hodnota štatistickej významnosti je nižšia ako konvenčne prijímaná hodnota 0,05, dokonca 

výrazne nižšia. Takto nízka pravdepodobnosť (p < 0,001, t.j. menej ako 0,1 %) nás vedie 

k pochybovaniu o platnosti nulovej hypotézy a k presvedčeniu, že nami stanovená hypotéza 

platí, t.j. v populácii existuje vzťah medzi týmito dvomi premennými. Tento systém je 

prakticky rovnaký pre všetky alternatívne hypotézy týkajúce sa korelácií. V prípade 

jednosmerných hypotéz však nulová hypotéza zahŕňa aj opačný ako nami stanovený vzťah. 

Napríklad, ak očakávame pozitívny vzťah, nulová hypotéza zahŕňa neprítomnosť vzťahu 

a akýkoľvek negatívny vzťah. A naopak, ak očakávame negatívny vzťah, nulová hypotéza 

zahŕňa neprítomnosť vzťahu a akýkoľvek pozitívny vzťah. Dajte si preto pozor na nastavenie 

hypotézy (Hypothesis) v jamovi. Pri analýze si taktiež doprajte čas na rozmýšľanie a nemýľte 

si korelačný koeficient s jeho štatistickou významnosťou! Nanešťastie sa neraz stalo, že 

študenti interpretovali korelačný koeficient ako štatistickú významnosť a naopak – ich zistenia 

a všetko na to nadväzujúce je automaticky neplatné! 

Tento postup použijeme aj pri overení hypotéz H2 a H3. V oboch prípadoch sme začali 

dvojsmerným testom signifikancie (Correlated). Oba zistené vzťahy boli v očakávanom smere, 

takže sme pokračovali samostatne jednosmerným testom. V prípade H2 nastavíme Correlated 

positively a pri H3 zas Correlated negatively. V prípade H4 volíme neparametrický 
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Spearmanov korelačný koeficient (jedna premenná je ordinálna). Výsledky z programu jamovi 

uvádzame v Obrázku 6.3.  
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Obrázok 6.3 Ukážka výsledkov korelačných analýz pre H2 až H4 v programe jamovi 

Ako je na obrázku vidieť, vzťah prežívaného šťastia s prívetivosťou a negatívnou 

emocionalitou je štatisticky významný, pretože hodnota p je menšia ako 0,05 – tieto hypotézy 

sa nám potvrdili. Pre zaujímavosť sme v Obrázku 6.3 uviedli aj výsledok dvojsmernej 

signifikancie pre hypotézu H4. Ak by táto hypotéza bola dvojsmernou, výsledok by nebol 

štatisticky významný, pretože p = 0.076 je viac ako 0,05. Keďže je hypotéza jednosmerná, 

výsledná jednosmerná signifikancia je polovičná voči dvojsmernej p = 0.038, čo je menej ako 

0,05 a hypotéza sa nám potvrdila. 

6.2 Interpretácia a zápis výsledkov korelačnej analýzy 
Z hľadiska NHST je pre nás dôležitá najmä informácia o tom, či pochybujeme alebo 

nepochybujeme o platnosti nulovej hypotézy, teda či potvrdzujeme alebo zamietame nami 

stanovenú alternatívnu hypotézu. Z tohto dôvodu sme sa zatiaľ venovali len hodnote štatistickej 

významnosti p. Avšak korelačná analýza má aj iný výsledok, ktorý je pre nás zaujímavý, a to 

práve korelačný koeficient. Korelačný koeficient je štandardizovaná hodnota s rozsahom od -1 

(absolútny negatívny vzťah) až 1 (absolútny pozitívny vzťah). Ako sme už v úvode kapitoly 

spomenuli, vyjadruje silu vzťahu medzi týmito premennými. Negatívne hodnoty hovoria 

o zápornom vzťahu, pozitívne hodnoty vypovedajú o kladnom vzťahu. Nižšie uvádzame ako 

interpretovať rôzne hodnoty korelačného koeficientu (Cohen, 1988). Ignorujúc znamienko 

korelačného koeficientu (pracujeme s absolútnou hodnotou), približné delenie je: 

• 0 – 0,1 – žiaden vzťah, vzťah blízky nule, prakticky zanedbateľný vzťah 

• 0,1 – 0,2 – veľmi slabý vzťah 

• 0,2 – 0,3 – slabý vzťah 

• 0,3 – 0,5 – stredne silný vzťah 

• 0,5 – 0,7 – silný vzťah 

• 0,7 a viac – veľmi silný vzťah 

Takéto hodnotenie je len rámcové, no napomáha nám pri interpretácii hodnôt. Vždy však záleží 

aj od oblasti, ktorú riešite. Pri niektorých oblastiach psychologického výskumu môže byť aj 

slabý vzťah zaujímavý, zatiaľ čo pri iných môže byť stredne silný vzťah „slabým“ (napr. vzťah 

výsledku psychodiagnostickej metodiky s kritériom, kde by sme očakávali silnejší vzťah). 

Koreláciu dvoch premenných môžeme graficky znázorniť prostredníctvom bodového grafu. 

V tomto grafe jednotlivé body vyjadrujú priesečníky hodnôt dvoch premenných pre každého 

jedného respondenta a môžeme vidieť, či a aký trend je v dátach. K týmto bodom je pridaná aj 

priamka, ktorá je umiestnená tak, aby bola k všetkým bodom najbližšie. Pri jednotlivých 

grafoch uvádzame aj hodnotu Pearsonovho korelačného koeficientu. 

 
r = 0,00 

 
r = 0,11 

 
r = 0,18 
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r = 0,21 

 
r = -0,35 

 
r = 0,56 

Obrázok 6.4 Grafické znázornenie vzťahov dvoch premenných (bodový graf s priamkou) 

Zápis výsledkov korelačnej analýzy je jednoduchý – potrebujeme uviesť hodnotu korelačného  

koeficientu (Pearsonovo r alebo Spearmanovo ρ [rhó]) a jeho štatistickú významnosť (p). 

V rámci slovného hodnotenia skomentujeme štatistickú významnosť, silu a smer vzťahu. 

Vhodné je, aby sme na začiatok uviedli aj to, ktorý korelačný koeficient sme použili a prečo. 

Nižšie uvádzame odpovede na nami stanovené hypotézy. 

Pre overenie hypotéz H1 až H3 sme na základe dodržania predpokladov pri všetkých 

testovaných premenných použili Pearsonov korelačný koeficient.  

 

H1: Predpokladáme štatisticky významný vzťah medzi extraverziou a prežívaným 

šťastím. 

Hypotéza H1 sa potvrdila. Zistili sme štatisticky významný, stredne silný, pozitívny 

vzťah (r = 0,48; p < 0,001) medzi extraverziou a prežívaným šťastím. 

 

H2: Prívetivosť a prežívané šťastie budú spolu štatisticky významne, pozitívne 

korelovať. 

Hypotéza H2 sa potvrdila. Zistili sme štatisticky významný, stredne silný, pozitívny 

vzťah (r = 0,31; p < 0,001) medzi prívetivosťou a prežívaným šťastím. 

 

H3: Predpokladáme, že negatívna emocionalita bude štatisticky významne, negatívne 

korelovať s prežívaným šťastím. 

Hypotéza H3 sa potvrdila. Negatívna emocionalita a prežívané šťastie spolu štatisticky 

významne, negatívne korelujú. Tento vzťah je stredne silný (r = -0,49; p < 0,001). 

 

H4: Najvyššie dosiahnuté vzdelanie bude štatisticky významne a pozitívne súvisieť so 

svedomitosťou. 

Pre overenie hypotézy H4 sme zvolili Spearmanov neparametrický korelačný 

koeficient, keďže premenná najvyššie dosiahnuté vzdelanie je ordinálna. Naša hypotéza 

sa potvrdila. Medzi premennými sme zistili štatisticky významný, slabý, pozitívny 

vzťah (ρ = 0,11; p = 0,038). 

Pri uvádzaní výsledkov teda nezabudnite napísať, aký koeficient ste použili, či sa hypotéza 

potvrdila alebo nie, hodnotu korelačného koeficientu a štatistickej významnosti. Nezabudnite 

tieto informácie dôkladne slovne zhodnotiť. A pre istotu, znovu zopakujeme: nezmýľte si 

štatistickú významnosť so silou vzťahu!  

V prípade, že máte viacero hypotéz, ktoré sa zaoberajú vzťahom nejakej premennej s inými 

premennými, môžete zvoliť zápis výsledkov do tabuľky. Treba zvážiť, či je praktickejšie 
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zapísať výsledky v texte alebo do tabuľky. Ak uvádzate číselné výsledky do tabuľky, 

neuvádzate ich duplicitne v texte, no stále je nutné popísať výsledky – interpretovať hodnoty. 

Príkladom môžu byť naše hypotézy H1, H2 a H3. Spoločnou premennou vo všetkých troch 

hypotézach je prežívané šťastie. Predtým, než sa vyjadríme k hypotézam samostatne, by sme 

mohli čitateľa informovať, že konkrétne výsledky uvádzame v tabuľke. Potom zhodnotiť 

hypotézy bez uvedenia číselných hodnôt a uviesť tabuľku. Príklad takejto tabuľky uvádzame 

nižšie. Osobne by sme v tomto prípade uvádzanie výsledkov v tabuľke nepoužili, keďže ide len 

o výsledky troch analýz, no uváženie je na vás. V prípade, že by sme uvádzali výsledky pre 

viacero analýz so spoločnou premennou/premennými, bolo by to vhodné a pre čitateľa 

prehľadnejšie. 

Tabuľka X  

Výsledky korelačnej analýzy pre hypotézy H1 až H3 

 Prežívané šťastie 

  N r p 

Extraverzia 281 0.48 < 0.001 

Prívetivosť 281 0.31 < 0.001 

Negatívna emocionalita 281 -0.49 < 0.001 

Poznámka. 

 

V niektorých výskumných štúdiách sa môžete stretnúť s tým, že autori používajú Pearsonovo r 

aj pre vyjadrenie súvisu medzi ordinálnymi premennými, či dokonca aj medzi nominálnymi. 

Môže to vytvárať chaos v tom, čo kedy použiť. Matematika v pozadí týchto analýz je vec 

kúzelná (čo iné povedať, ak sa v tom nevyznáme) – niekedy sa k tomu istému výsledku dá 

dopracovať prostredníctvom iných analýz. Naopak, v niektorých prípadoch ide len 

o zjednodušené informovanie o pomeroch v dátach, najmä ak autori primárne používajú 

komplexnejšie analýzy a súvis medzi pármi premenných len hrubo dopĺňa tieto komplexné 

výsledky.  
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7. Porovnávacie testy 
V našich výskumoch sa často stretávame s potrebou porovnávať. Možno najčastejšie 

využívaným je test pre porovnanie dvoch skupín, no porovnávame aj dve merania alebo našu 

hodnotu voči konkrétnej hodnote. V tejto časti si postupne ukážeme testy pre dva nezávislé 

výbery a testy pre dve párové merania.  

Testy pre dva nezávislé výbery (angl. independent samples) využívame vtedy, ak potrebujeme 

zistiť, či sa líšia pomery v dvoch výberoch. Slovo výber je v tomto zmysle možno lepšie 

zameniť za skupina – ak porovnávame dve skupiny v miere určitého konštruktu, ktorý je 

meraný na kontinuálnej úrovni. Nezávislé v tomto prípade vyjadruje, že respondenti sa 

v jednom a druhom výbere neopakujú. Ak sa na vec pozrieme skrz skupiny, dáva to vcelku 

zmysel – ak by sme porovnávali mužov a ženy, nie je možné, aby niekto označil, že je muž aj 

žena. V rámci názvu zas dáva zmysel, že možno chceme porovnať dva výbery z populácie, 

takže podmienkou je, aby boli od seba nezávislé, t.j. respondenti sa neopakujú v jednom 

a druhom výbere.  

Testy pre párové merania (angl. paired samples) využívame v prípade, že chceme porovnať dve 

kontinuálne premenné na tom istom výbere. V tomto prípade sa nelíšia respondenti – tí sú 

rovnakí, no líšia sa premenné. Tieto analýzy používame najčastejšie v prípade, ak meriame 

nejaký konštrukt dvakrát v čase (longitudinálny dizajn), pred nejakou udalosťou či intervenciou 

a po nej (pretest a posttest) alebo dve premenné, ktoré sú merané rovnakým spôsobom no 

v inom kontexte: miera obľúbenosti sladkého alebo slaného pečiva, aktuálna životná 

spokojnosť verzsus očakávaná za rok, a iné.  

Pri potulkách výskumnými štúdiami alebo programom jamovi sa môžete stretnúť aj s 

jednovýberovým testom (angl. one sample). Tomuto testu sa v tejto učebnici nebudeme 

detailnejšie venovať, no v prípade záujmu ho po prečítaní tejto kapitoly hravo zvládnete. Tento 

test používame, ak chceme premennú v našom výskume porovnať voči konkrétnej hodnote. 

Táto hodnota nepochádza z nášho výskumu – môže ísť o hodnotu nejakého kritéria alebo 

odhadovanú hodnotu v populácii. V tomto prípade pracujeme len s jedným výberom – tým 

naším, a porovnávame ho voči nejakej konkrétnej hodnote, ktorá nepochádza z nášho dátového 

súboru. V jamovi ho nájdete v časti T-Tests pod názvom One Sample T-Test. 

V závere tejto kapitoly sa oboznámime s porovnávacími testami pre 3 a viac skupín, ktorý sa 

nazýva jednofaktorová analýza rozptylu, v anglickej literatúre nazývaná one-way ANOVA. 

Tento test využijete v prípade, že by ste chceli nejakú kontinuálnu premennú porovnať medzi 

tromi alebo viacerými skupinami, napr. odbor štúdia či profesie, rôzne experimentálne skupiny 

a pod. 

Predpokladom pre použitie spomenutých testov je kontinuálna úroveň merania porovnávaných 

premenných a v prípade parametrických testov aj ich normálna distribúcia. Pri porovnávaní 

dvoch výberov potrebujeme zistiť, či je táto premenná normálne distribuovaná v oboch 

skupinách, pri jednovýberovom len či je normálne distribuovaná v našom výbere. V prípade 

porovnávania dvoch meraní zisťujeme, či je rozdiel medzi prvou a druhou premennou normálne 

distribuovaný. Ak sa nám nepodarí potvrdiť normálnu distribúciu, môžeme použiť 

neparametrickú alternatívu.  

V nasledujúcich častiach si pre jednotlivé testy ukážeme, ako môžu vyzerať hypotézy, ako ich 

overiť v jamovi a ako výsledky interpretovať a zapísať. 
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7.1 Porovnávanie dvoch skupín (výberov) 
Pre skúmanie rozdielov medzi dvomi skupinami používame parametrický Studentov alebo 

Welchov t-test, prípadne neparametrický Mann-Whitneyho U-test. Ako sme už na začiatku 

spomenuli, pre parametrické testy je dôležité naplnenie podmienky normálnej distribúcie 

porovnávanej premennej, ktorú nazývame závislá premenná, v oboch porovnávaných 

skupinách. Pokiaľ táto podmienka nie je naplnená, môžeme použiť neparametrickú verziu 

porovnávacieho testu. Zjednodušene povedané, základný rozdiel medzi t-testom a U-testom 

tkvie v tom, že parametrické testy pracujú s priemerom, zatiaľ čo neparametrické testy 

s priemerným poradím. Neparametrické testy teda nie sú závislé na normálnej distribúcii 

a zvládnu aj prípady odľahlých hodnôt. Nevýhodou je, že nepracujú s hodnotami ako takými, 

a teda ich priemerom a štandardnou odchýlkou, no len poradím hodnôt.  

V prvom kroku si môžeme predstaviť hypotézy, ktoré by sme analyzovali prostredníctvom 

porovnávacích testov medzi skupinami. V prípade alternatívnych hypotéz vyjadrujeme, že 

existuje rozdiel v nejakej premennej medzi určitými skupinami. Podobne ako pri korelačnej 

analýze rozoznávame dvojstranné a jednostranné hypotézy. Pri dvojstranných očakávame, že 

pomery sa v jednej a druhej skupine líšia. Pri jednostranných hypotézach naše očakávanie 

špecifikujeme aj o to, pri ktorej skupine očakávame vyššie alebo nižšie hodnoty. Príkladom 

môže byť dvojstranná hypotéza: 

H: Predpokladáme, že existuje rozdiel v [závislá premenná] medzi skupinou X a Y. 

Nulová hypotéza v tomto prípade vyjadruje neprítomnosť rozdielu: 

H0: Neexistuje rozdiel v [závislá premenná] medzi skupinou X a Y. 

Alebo jednosmerná: 

H: Predpokladáme, že skupina X dosahuje vyššiu úroveň [závislej premennej] 

v porovnaní s Y. 

Pri ktorej nulová hypotéza vyjadruje: 

 H0: Skupina X nedosahuje vyššiu úroveň [závislej premennej] v porovnaní s Y. 

 

Rovnako ako pri koreláciách  bude výsledkom analýzy koeficient a jeho štatistická 

významnosť. V prípade parametrických testov je výsledkom buď to Studentov alebo Welchov 

koeficient t. V prípade dvojsmerného testu, nulová hypotéza hovorí, že t sa má v populácii 

rovnať 0. My však tieto skupiny porovnáme a zistíme že t sa nerovná 0. Štatistická významnosť 

nám povie, aká je pravdepodobnosť získať takú hodnotu t pri danom počte stupňov voľnosti, ak 

v cieľovej populácii platí nulová hypotéza. Ak je táto pravdepodobnosť veľmi nízka, resp. 

nižšia ako nami stanovaná hladina významnosti (konvenčne 0,05), pochybujeme o platnosti 

nulovej hypotézy a prijímame našu alternatívnu hypotézu. V predchádzajúcej vete sme použili 

pojem stupne voľnosti (angl. degrees of freedom, skratka DF alebo df). Ide o počet elementov, 

ktoré sa podieľajú na výpočte koeficientu a sú dôležité pre výpočet štatistickej významnosti 

koeficientu t. Našťastie pre nás, jamovi to všetko vypočíta za nás, a preto sa tým nemusíme až 

tak veľmi trápiť. 

Ako príklad si overíme nasledujúcu hypotézu  



 
 

63 

H1: Predpokladáme, že ženy v porovnaní s mužmi dosahujú vyššiu mieru prívetivosti. 

Na začiatok by sme mohli očistiť premennú Prívetivosť od odľahlých hodnôt. Postupujeme 

samostatne pre skupinu mužov a žien. Pre pripomenutie postupu si pozrite podkapitolu 5.4. Ako 

sme už spomenuli, v tejto učebnici pracujeme s dátami tak ako sú a odľahlé hodnoty 

neodstraňujeme. Pokračujeme overením normálnej distribúcie tejto premennej v jednotlivých 

skupinách. Postup je rovnaký ako v prípade korelačnej analýzy, s tým rozdielom, že použijeme 

aj funkciu Split by. V karte Analyses si zvolíme Exploration a Descriptives. Do okienka 

Variables si vložíme závislú premennú a do Split by dáme premennú, ktorá vyjadruje 

porovnávané skupiny. Pri nastavení analýzy si necháme prednastavené možnosti, no pridáme 

šikmosť a špicatosť (Skewness a Kurtosis), zapneme test normality (Shapiro-Wilk) a z grafov si 

dáme vykresliť Q-Q grafy (Q-Q). Výsledkom bude tabuľka obsahujúca deskriptívne údaje 

a výsledok Shapiro-Wilkovho testu, Q-Q graf. Všetky tieto informácie budú samostatne pre 

mužov a ženy, keďže tieto dve skupiny obsahuje premenná pohlavie. Pri hodnotení 

postupujeme rovnako ako v kapitole 6.1. Sledujeme najmä šikmosť distribúcie a Q-Q grafy. 

Keďže máme vyšší počet respondentov, výsledky Shapiro-Wilkovho testu môžu byť 

signifikantné aj napriek pomerne dobrej distribúcii. V Obrázku 7.1 uvádzame výsledky zo 

spustenej analýzy. Už v tomto momente môžeme vidieť, aké sú pomery medzi mužmi a ženami. 

Ak sme predpokladali, že ženy sú prívetivejšie v porovnaní s mužmi, očakávame vlastne, že 

priemer prívetivosti v skupine žien je vyšší ako u mužov. Stačí sledovať výsledok deskriptívnej 

analýzy a zistíme, či sme na dobrej ceste k overeniu hypotézy. V riadku Mean vidíme, že 

priemer prívetivosti v skupine mužov je 3,58, zatiaľ čo u žien je to 3,85 – čo je vyššia hodnota 

ako u mužov. Takže sme na dobrej ceste, lebo dáta ukazujú trend v súlade s našou hypotézou. 

Ale pozor! Samotné porovnanie priemerov NIE je dostačujúce k overeniu hypotézy! Pre 

overenie potrebujeme uskutočniť štatistický test, ktorý popisujeme v ďalšej časti. 

Rozdielna situácia by nastala v prípade, ak by nám už výsledky deskriptívnej štatistiky ukázali 

opačný trend ako sme očakávali. Skúsme si predstaviť, že by muži mali vyššiu hodnotu 

priemeru prívetivosti v porovnaní so ženami. V takomto prípade automaticky vieme, že naša 

hypotéza H1 sa nepotvrdila – nezistili sme očakávaný trend. V takomto prípade, podobne ako 

sme popísali pri koreláciách, odporúčame zvoliť dvojsmerný test signifikancie. 
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Obrázok 7.1 Výsledok šikmosti, špicatosti a Shapiro-Wilkovho testu pre premenné Extraverzia 

a Prívetivosť, samostatne pre mužov a ženy 

Ako možno vidieť, jednotlivé výsledky sú samostatne pre mužov a ženy. Šikmosť a špicatosť 

je v oboch skupinách v rámci normy. Shapiro-Wilkov (Shapiro-Wilk p) test nám vyšiel 

štatisticky nevýznamný (p > 0,05) v oboch skupinách. Pre finálne rozhodnutie skontrolujeme 

aj Q-Q grafy, ktoré sú znázornené v Obrázku 7.2. 

 

Obrázok 7.2 Q-Q grafy pre premennú Prívetivosť, samostatne pre mužov a ženy 
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Ako možno vidieť, v oboch prípadoch ležia takmer všetky body na priamke. Z hľadiska 

všetkých dôkazov sme sa rozhodli pre použitie parametrické testu – t-testu. Či vybrať Studentov 

alebo Welchov t-test posúdime na základe výsledku Levenovho testu homogenity rozptylov. 

7.1.1 Testy pre dva nezávislé výbery a kontinuálne premenné v programe jamovi 

Všetko, čo potrebujeme, nájdeme v karte Analyses, kde zvolíme T-Tests a vyberieme 

Independent Samples T-Test. Otvorí sa nám okno, ktoré zobrazujeme v Obrázku 7.3. 

 

Obrázok 7.3 Okno pre nastavenie analýzy testu pre dva nezávislé výbery 

Ako pri iných analýzach máme okienko, v ktorom sa nachádzajú všetky premenné v našom 

súbore. Vedľa nájdeme okienko Dependent Variables, kam vkladáme závislé premenné, teda 

tie, v ktorých chceme hľadať rozdiel. Pod ním je okienko Grouping Variable, do ktorého 

vložíme premennú, ktorá určuje dve skupiny. Dajte si pozor. Pokiaľ máte premennú, ktorá má 

viac ako dve hodnoty (viac ako dve skupiny) a vložíte ju do tohto okienka, jamovi vám vráti 

chybu – nevie totiž, ktoré skupiny má porovnať. Je preto potrebné, aby ste premennú 

transformovali alebo zapli filter tak, aby zostali len dve aktívne skupiny (vyfiltrujete 

respondentov, ktorí majú inú skupinu ako tie, ktoré chcete porovnávať). V časti Tests si 

môžeme vybrať, ktorý test chceme vypočítať.  

V časti Hypothesis vyberáme, akú máme hypotézu. Dvojstranná hypotéza je nastavená 

v základe (Group 1 ≠ Group 2). Ak máme stanovenú jednostrannú hypotézu a výsledky 

deskriptívnej analýzy sú v súlade s našim očakávaním, volíme podľa našej hypotézy. Group 1 

je skupina, ktorá má v premennej nižšiu hodnotu, Group 2 je tá, ktorá má vyššiu. V našom 

prípade Group 1 znamená muži (číselne ich máme označených ako 1) a Group 2 sú ženy 

(označené ako 2). Pri overovaní našej hypotézy H1 nastavíme Group 1 < Group 2, keďže 

očakávame, že ženy majú v priemere vyššiu prívetivosť.  
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V časti Missing values nastavujeme, ako sa má jamovi vysporiadať s chýbajúcimi hodnotami 

závislej premennej. Pokiaľ naraz analyzujete viaceré závislé premenné, pri ktorých máte aj 

chýbajúce hodnoty, môžete nastaviť Exclude cases analysis by analysis, kedy analýza prebehne 

s počtom respondentov, ktorí majú prítomné hodnoty pri jednotlivých závislých premenných – 

počty respondentov sa tak môžu meniť od analýzy k analýze. Ak zvolíte Exclude cases listwise, 

budú respondenti, ktorí majú chýbajúcu hodnotu v čo i len jednej zo závislých premenných, 

vylúčení zo všetkých analýz, ktoré máte nastavené – počet respondentov bude rovnaký pri 

každej analýze. 

Dôležitá časť je Additional Statistics, kde si môžeme zvoliť vypočítanie ďalších informácií. 

Mean difference nám vráti hodnotu rozdielu medzi priemermi závislej premennej v jednej 

a druhej skupine. Effect size nám vypočíta hodnotu miery efektu, inak povedané praktickú 

veľkosť rozdielu – Cohenovo d pre parametrické testy a poradovo-biseriálny korelačný 

koeficient pre Mann-Whitneyho U-test. Zvolením Descriptives získame deskriptívnu štatistiku 

pre jednotlivé skupiny a závislé premenné (tú už ale poznáme ešte z explorácie dát, no neublíži, 

ak to máme „pokope“).  

V poslednej časti Assumption Checks si môžeme zvoliť Shapiro-Wilkov test a zobrazenie Q-Q 

grafu pre posúdenie normality. My sme však tento krok už spravili jednotlivo pre každú skupinu 

zvlášť, takže tieto možnosti nepotrebujeme, no v prípade ak sme sa rozhodli pre t-test, musíme 

vybrať, ktorý použijeme. Rozhodnutie spravíme na základe výsledku Levenovho testu pre 

rovnosť rozptylov. Studentov t-test má predpoklad, že rozptyly hodnôt okolo priemeru sú 

v oboch skupinách rovnaké. Vzorec, prostredníctvom ktorého sa počíta Studentov t-test, 

obsahuje spoločnú štandardnú odchýlku. Ak by sme nepotvrdili predpoklad rovnosti rozptylov, 

volíme Welchov t-test, ktorého vzorec je prispôsobený pre túto situáciu. V jamovi zvolíme 

Homogeneity test, čím získame výsledok Levenovho testu. Ten má na pozadí nulovú hypotézu, 

ktorá hovorí, že testované skupiny majú rovnaké rozptyly. V prípade, že nám štatistická 

významnosť tohto testu vyjde vyššia ako 0,05, konštatujeme, že rovnosť rozptylov je dodržaná 

(nepochybujeme o nulovej hypotéze) a pre zisťovanie rozdielov medzi skupinami volíme 

Studentov t-test. V prípade, že by bol výsledok Levenovho testu štatisticky významný (p < 

0,05), konštatujeme, že rovnosť rozptylov nie je dodržaná a volíme Welchov t-test. 

Ako teda na to? V prvom rade pomaly. Stretávame sa s tým, že si študenti mýlia výsledky 

Shapiro-Wilkovho testu s Levenovym testom a ešte horšie s výsledkom t-testu. Shapiro-

Wilkov a Levenov test nehovoria nič o rozdieloch priemerov medzi skupinami. 

Prostredníctvom nich sa len dopracovávame k tomu, ktorý test vybrať. V našom prípade sme 

usúdili dodržanie podmienky normality distribúcie pre použitie t-testu. V ďalšom kroku 

sledujeme výsledok Levenovho test, ktorý nám povie, či je medzi skupinami dodržaná rovnosť 

rozptylov. Výsledok zobrazujeme v Obrázku 7.4. 

 

Obrázok 7.4 Výsledok Levenovho testu 
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Pri výsledku sledujeme štatistickú významnosť, ktorá je v tomto prípade vyššia ako 0,05 (p = 

0,351). Ako sme už uviedli, pokiaľ je hodnota p > 0,05, hovoríme o dodržaní rovnosti rozptylov 

v porovnávaných skupinách a pre porovnanie skupín volíme Studentov t-test. V tomto 

momente si vypneme Levenov test, aby sme nemali zbytočne veľa výsledkov a môžeme ísť 

analyzovať. V časti Tests zvolíme Student’s. V časti Hypothesis zvolíme jednosmerný test 

signifikancie. V H1 predpokladáme, že ženy sú prívetivejšie, takže zvolíme Group 1 < Group 

2. Výsledky zobrazujeme v Obrázku 7.8. V tomto prípade je p < 0,001, teda je určite menšie 

ako 0,05, kedy považujeme výsledok za štatisticky významný. Pýtame sa: aká je 

pravdepodobnosť získať takýto rozdiel medzi skupinami pri tomto počte stupňov voľnosti, ak 

v populácii nie je rozdiel alebo majú muži vyššiu prívetivosť? H1 je jednostranná, preto nulová 

hypotéza zahŕňa aj opačný prípad voči tomu, ktorý sme vyjadrili v hypotéze. Pravdepodobnosť 

je nižšia ako 0,1 %, a preto pochybujeme o platnosti nulovej hypotézy a prijímame našu 

hypotézu. Hypotéza H1 sa potvrdila. 

 

Obrázok 7.5 Výsledok Studentovho t-testu s mierou efektu a deskriptívnou štatistikou 

(prívetivosť a pohlavie) 

Ak by sme nezistili rovnosť rozptylov, teda výsledok Levenovho testu by bol štatisticky 

významný (p < 0,05), zvolili by sme Welchov t-test. Výsledok je zobrazený v Obrázku 7.6. 

Ako možno vidieť, výsledok sa v tomto prípade v podstate nezmenil – Hypotéza H1 sa 

potvrdila. 

 

Obrázok 7.6 Výsledok Studentovho t-testu s mierou efektu (prívetivosť a pohlavie) 

Ak by sme v prípade tejto hypotézy usúdili nedodržanie normálnej distribúcie závislej 

premennej v porovnávaných skupinách, mohli by sme zvoliť neparametrický Mann-Whitneyho 

test. Výsledok je zobrazený v Obrázku 7.7. Opäť sledujeme štatistickú významnosť testu (p) 

a hodnotíme, že H1 sa potvrdila. 
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Obrázok 7.7 Výsledok Mann-Whitneyho U-testu s mierou efektu (prívetivosť a pohlavie) 

7.1.2 Interpretácia a zápis výsledkov testov porovnania dvoch skupín 

Podobne ako pri korelačnej analýze sa pri interpretácii výsledkov zaujímame o štatistickú 

významnosť ako aj mieru efektu, teda nejaké štandardizované vyjadrenie veľkosti rozdielu 

medzi skupinami. Toto sme získali vďaka tomu, že sme si dali vypočítať Effect size. Ako ste si 

v obrázkoch 7.5 a 7.6 mohli všimnúť, máme tam aj hodnotu Cohenovho d. Ide o mieru efektu, 

ktorá berie v úvahu veľkosť rozdielu priemerov v porovnávaných skupinách vzhľadom na 

štandardnú odchýlku premennej. Vďaka tomu je štandardizovaná a môžeme porovnávať 

veľkosť rozdielov s inými výskumami a stabilným (zaužívaným) spôsobom ju interpretovať. 

Vyjadruje, o koľko štandardných odchýlok sa skupiny medzi sebou líšia. V prípade Mann-

Whitneyho U-testu používame poradovo-biseriálny korelačný koeficient r (Rank biserial 

correlation). Ten na rozdiel od Cohenovho d nevyužíva priemer, preto je vhodný pre situáciu, 

kedy sa nepotvrdí normálna distribúcia. Ako tieto hodnoty interpretovať? Podobne ako 

v prípade korelačného koeficientu, interpretácia je len približná, no zaužívané delenie 

uvádzame v tabuľke nižšie (Cohen, 1988): 

Veľkosť rozdielu Cohenovo d Poradovo-biseriálny koeficient r 

Zanedbateľný < 0,2 < 0,1 

Malý 0,2 – 0,5 0,1 – 0,3 

Stredný 0,5 – 0,8 0,3 – 0,5 

Veľký > 0,8 > 0,5 

 

Pri zápise výsledkov overovania hypotéz je dôležité informovať o tom, aký test sme použili 

a prečo. Ďalej zapíšeme, či sme našu hypotézu potvrdili alebo nie. Za tým zapíšeme výsledky 

testu a deskriptívu pre jednotlivé skupiny. Ak sme použili t-test, mali by sme uviesť hodnotu t, 

df, p a Cohenovho d. Formát zápisu t-testu je: t(df) = „hodnota t“. Ku každej skupine uvedieme 

počet respondentov N, priemer M a štandardnú odchýlku SD. Ak máte záujem, môžete uviesť 

aj hodnotu mediánu. Ak sme použili Mann-Whitneyho U-test, zapisujeme hodnotu U a p. Ku 

každej skupine zapíšeme počet respondentov N, medián Mdn hodnoty prvého a tretieho kvartilu 

(Q1 a Q3), ktoré používame pre deskripciu premenných, ktoré nemajú normálnu distribúciu. 

Tie si však musíme vypočítať zvlášť (Explore a Descriptives).. Pokiaľ chceme, môžeme zapísať 

aj priemer a štandardnú odchýlku. 

Nižšie uvádzame možnú podobu zápisu výsledkov jednotlivých testov. Pri zápise sa riaďte tým, 

čo sme spomenuli vyššie. Konkrétna formulácia viet je už na vás, no domnievame sa, že 

kreatívne vyžitie si treba dopriať v iných častiach práce, tu je dôležité, aby bolo jasné, čo a ako 

ste zistili. 

Studentov t-test: 

Pre overenie hypotézy H1 sme použili Studentov t-test, keďže sme potvrdili normálnu 

distribúciu a rovnosť rozptylov prívetivosti v oboch skupinách. Hypotéza H1 sa 

potvrdila. Zistili sme, že ženy (N = 143; M = 3,85; SD = 0,54) dosahujú štatisticky 
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významne vyššiu mieru prívetivosti (t(279) = -4,29; p < 0,001) v porovnaní s mužmi (N 

= 138; M = 3,58; SD = 0,51). Tento rozdiel je stredne veľký (d = -0,51). 

Welchov t-test: 

Pre overenie hypotézy H1 sme použili Welchov t-test, keďže sme potvrdili normálnu 

distribúciu, no nepotvrdili sme predpoklad rovnosti rozptylov prívetivosti v oboch 

skupinách. Hypotéza H1 sa potvrdila. Zistili sme, že ženy (N = 143; M = 3,85; SD = 

0,54) dosahujú štatisticky významne vyššiu mieru prívetivosti (t(278,90) = -4,29; p < 

0,001) v porovnaní s mužmi (N = 138; M = 3,58; SD = 0,51). Tento rozdiel je stredne 

veľký (d = -0,51). 

Mann-Whitneyho U-test: 

Podmienka normálnej distribúcie testovanej premennej nebola v porovnávaných 

skupinách naplnená, preto sme pre overenie hypotézy použili Mann-Whitneyho U-test. 

Hypotéza H1 sa potvrdila. Zistili sme, že ženy (N = 143; Mdn = 3,83; Q1 = 3,42; Q3 = 

4,25) dosahujú štatisticky významne vyššiu mieru prívetivosti (U = 6975,50; p < 0,001) 

v porovnaní s mužmi (N = 138; Mdn = 3,58; Q1 = 3,17; Q3 = 3,92). Tento rozdiel je 

malý (r = 0,29). 

Ak máte nižší počet respondentov, na základe ktorých overujete hypotézu, môže sa stať, že vám 

aj prakticky zaujímavý výsledok vyjde štatisticky nevýznamný. Podobne ako pri koreláciách, 

to nič nemení na tom, že sa vám hypotéza nepotvrdila, no v rámci diskusie výsledkov môžete 

spomenúť napríklad to, že ste zistili malý až stredne veľký rozdiel, no nebol štatisticky 

významný. Pokiaľ zistíte zanedbateľný alebo veľmi malý rozdiel a nebol signifikantný, 

interpretujete to ako neprítomnosť rozdielu. Ak by ste zistili zanedbateľný rozdiel, ktorý by bol 

vďaka vysokému počtu stupňov voľnosti štatisticky významný, prihliadnite na jeho veľkosť pri 

interpretácii – síce sme zistili štatisticky významný rozdiel, no jeho veľkosť je prakticky 

nevýznamná/zanedbateľná. 

Ak by ste mali viacero závislých premenných, ktoré porovnávame medzi rovnakými skupinami 

tým istým testom, môžeme číselné výsledky zapísať do tabuľky. V takomto prípade v texte 

uvedieme, že výsledky sú v danej tabuľke a do textu už hodnoty neuvádzame, no stále musíme 

uviesť slovné zhodnotenie, podobne ako v príklade vyššie. Nižšie uvádzame možný vzhľad 

tabuľky. Ak by ste mali v jednej tabuľke výsledky Studentovho a Welchovho t-testu, nie je to 

problém. Z popisu pri hypotézach to čitateľ pochopí, no môžete mu to pripomenúť aj 

poznámkou v poslednom riadku tabuľky. 

Tabuľka X  

Výsledky porovnania mužov a žien v prívetivosti a otvorenosti 

 Muži Ženy Výsledok t-testu 

Závislá premenná M SD N M SD N t df p d 

Prívetivosť 3,58 0,51 137 3,85 0,54 143 -4,29 279 < 0,001 -0,51 

Otvorenosť 3,52 0,64 138 3,49 0,58 143 0,38 279 0,705 0,05 

Poznámka. 

 

Na záver znovu upozorňujeme, nemýľte si štatistickú významnosť s veľkosťou rozdielu!   
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7.2 Porovnávanie dvoch meraní 
Táto časť je určená pre všetkých z Vás, ktorí sa zameriavate na zmenu v určitej kontinuálnej 

premennej u tých istých respondentov či participantov. Testy pre porovnávanie dvoch meraní 

najčastejšie nachádzajú uplatnenie pri výskumoch, ktoré sa zaoberajú zmenou: 

• v čase – výskumník odmeria určitú premennú v čase 1 a v čase 2 (napr. o hodinu, týždeň 

či rok) a skúma, či nastala zmena 

• po intervencii či nejakej udalosti – rovnako ide o zmenu v čase, no v tomto prípade sa 

v dizajne počíta s tým, že by zmena mala nastať na základe nejakej udalosti – napr. 

experimentálneho zásahu, intervencii, liečbe a pod. 

• podľa špecifikácie – meriame to isté v rovnakom čase no s iným obsahom, napr. 

zaujímame sa o subjektívne hodnotenie vzťahu s matkou a otcom a porovnávame či 

existuje rozdiel 

Pri porovnávaní dvoch meraní nás vlastne zaujíma, či je priemerný rozdiel medzi dvomi 

spojitými premennými dostatočne veľký na to, aby bol pri veľkosti nášho výberu štatisticky 

významný. Podobne ako pri testovaní rozdielov medzi dvomi skupinami si môžeme stanoviť 

dvojstrannú alebo jednostrannú hypotézu. V tomto prípade ale ťažšie uviesť nejakú všeobecnú 

formu (pravdou je, že nám žiadna všeobecná formulácia nenapadá), preto si ukážeme fiktívny 

príklad a veríme, že pochopíte princíp. V našom fiktívnom výskume sme sa zaujímali, či 

nastane zmena v pociťovanom strese u študentov po absolvovaní skúšky. V rámci konzistencie 

a zredukovania efektu ostatných premenných sme výskum uskutočnili pred a po skúške z toho 

istého predmetu v rámci jedného termínu. Aby sme respondentov príliš nezaťažili 

„vypytovaním sa“ (najmä pri čakaní na skúšku), pre meranie pociťovaného stresu sme použili 

jednoduchú otázku: „Ako veľmi sa cítite byť stresovaný/á?“. Respondenti odpovedali 

prostredníctvom 11 bodovej škály od 0 – Vôbec necítim stres po 10 – Cítim neznesiteľný stres. 

V rámci nášho výskumu predpokladáme, že nastane zmena, preto by sme mohli stanoviť 

dvojstrannú hypotézu: 

H1: Predpokladáme, že nastane štatisticky významná zmena v pociťovanom strese 

u respondentov v čase pred a po skúške. 

alebo 

H1: Predpokladáme, že pociťovaný stres pred skúškou a po skúške sa bude štatisticky 

významne líšiť. 

Môžeme však predpokladať, že po skúške stres zo študentov „opadne“, a preto nastane zníženie 

pociťovaného stresu: 

H1: Predpokladáme, že pociťovaný stres po skúške bude štatisticky významne nižší ako 

pred skúškou.  

Do nášho výskumu sa zapojilo 84 študentov, ktorí sa zúčastnili na skúške. Dáta máme, môžeme 

ísť overiť hypotézu. Na začiatok potrebujeme vedieť, či použiť parametrický (Studentov t) 

alebo neparametrický (Wilcoxonov) test. Rozhodnutie, ktorý test vybrať, robíme ako pri iných, 

už spomenutých analýzach. V tomto prípade však nekontrolujeme odľahlé hodnoty 

a neposudzujeme distribúcie samostatných premenných ale ich rozdielu. V našom príklade sa 

nebudeme zaujímať o distribúciu premenných stres pred skúškou a stres po skúške, no 

vytvoríme si novú premennú, ktorá vyjadruje rozdiel týchto dvoch premenných. V jamovi si 
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vytvoríme novú vypočítanú premennú (New computed variable), ktorú nazveme rozdiel v strese 

a zadáme tam prvú premennú, od ktorej odčítame druhú premennú (alebo naopak): stres pred 

skúškou – stres po skúške. Ak chceme odstrániť vzdialené hodnoty, pracujeme s touto 

premennou. Ak chceme vybrať, či použiť parametrický alebo neparametrický test, posudzujeme 

túto premennú. Pokiaľ nemáte v pláne riešiť vzdialené hodnoty a pre posúdenie normality vám 

stačí výsledok Shapiro-Wilkovho testu alebo Q-Q graf, nemusíte robiť nič a prejsť rovno 

k analýze v jamovi. 

7.2.1 Porovnávanie dvoch meraní v programe jamovi 

Ak chceme, môžeme si na začiatok vypočítať premennú vyjadrujúcu rozdiel medzi dvomi 

meraniami, tak ako sme uviedli v predchádzajúcom odseku. Túto premennú môžeme následne 

analyzovať – identifikovať a odfiltrovať vzdialené hodnoty, posúdiť distribúciu (šikmosť, 

špicatosť, Shapiro-Wilkov test, Q-Q graf). Premenná v našom príklade neobsahuje žiadne 

vzdialené hodnoty a na základe komplexného posúdenia sme sa dostali k záveru, že môžeme 

použiť parametrický test, no v rámci interpretácie si ukážeme oba testy. 

V jamovi nájdeme test pre porovnanie dvoch meraní v karte T-Tests, kde zvolíme možnosť 

Paired Samples T-Test. Otvorí sa nám okno, ktoré zobrazujeme v obrázku 7.8. 

 

Obrázok 7.8 Okno pre nastavenie analýzy rozdielu dvoch meraní 
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Podobne ako pri porovnávaní dvoch skupín tu nájdeme možnosť zvoliť parametrický test alebo 

neparametrický test v časti Tests. V časti Hypothesis volíme, či ide o dvojstrannú hypotézu (je 

rozdiel) alebo jednostrannú hypotézu: Measure 1 > Measure 2 vyjadruje, že prvá premenná 

v páre je väčšia ako druhá, a zas Measure 1 < Measure 2 vyjadruje opak (prekvapivo...) V časti 

Additional Statistics si môžeme zapnúť Mean difference, vďaka čomu budeme vedieť 

priemerný rozdiel (tú istú hodnotu získame vypočítaním priemeru vypočítanej premennej 

rozdielu). Čo nás určite zaujíma je Effect size, vďaka čomu budeme vedieť posúdiť praktickú 

veľkosť rozdielu. Zapnúť môžeme aj Descriptives. V prípade, že by sme vopred neriešili 

normalitu distribúcie, môžeme si zapnúť aj Normality test a Q-Q Plot. Je to však to isté, ako 

keď tieto analýzy spravíme na vypočítanej premennej rozdielu (v našom príklade rozdiel 

v strese). Aby sme spustili analýzu, musíme do okienka Paired Variables presunúť premenné, 

ktoré chceme porovnávať. Pri tejto analýze nebudeme mať premenné pod sebou, ale vedľa seba 

– v páre. Dajte si pozor, aby ste premenné vložili správne, inak sa vám analýza nespustí. 

Výsledok analýzy nájdete v Obrázku 7.9. 

 

Obrázok 7.9 Výsledok Studentovho t-testu pre dve merania 

V tomto prípade bola pri analýze nastavená dvojstranná hypotéza. Rovnako ako pri 

predchádzajúcich analýzach, sledujeme hodnotu štatistickej významnosti p a porovnávame túto 

hodnotu s nominálnou hodnotou, ktorá je zaužívane 0,05. Vidíme, že p < 0,001. To znamená, 

že rozdiel medzi dvomi meraniami je štatisticky významný, tým pádom sa naša hypotéza 

potvrdila. Ak by sme mali stanovenú špecifickejšiu hypotézu, v ktorej by sme predpokladali, 

že pociťovaný stres sa po skúške zníži, potvrdila by sa nám, keďže priemerný stres pred skúškou 

je vyšší ako po skúške – túto informáciu by sme už zistili pri deskriptíve premenných, ale ak 

sme v nastavení zvolili Descriptives, nájdeme ju aj vo výsledku analýzy. Ak by ste pracovali 

s premennými, pri ktorých nemožno použiť parametrický test – napríklad by premenné neboli 

kontinuálne ale ordinálne, mali by ste veľmi nízky počet respondentov, alebo by nebola 

dodržaná normalita distribúcie rozdielu medzi meraniami – môžete použiť neparametrický 

Wilcoxonov test. Stačí, ak ho zvolíte v ponuke Tests. 

7.2.2 Interpretácia a zápis výsledkov testov porovnania dvoch meraní 

Interpretácia a zápis výsledkov je veľmi podobný ako v prípade porovnávania dvoch skupín, 

ktoré nájdete v časti 7.1.2. Ako sme v predchádzajúcom odseku uviedli, pre vyhodnotenie 

výsledku najskôr sledujeme štatistickú významnosť. V našom prípade je rozdiel medzi 

meraniami pred a po skúške štatisticky významný. Druhá vec, ktorá nás nielen môže, ale aj má 

zaujímať, je praktická veľkosť rozdielu. Opäť ide o Cohenovo d v prípade parametrického testu 
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alebo poradovo-biseriálny korelačný koeficient v prípade neparametrického testu. Interpretácia 

je rovnaká ako pri porovnávaní dvoch skupín. 

Zápis výsledku by mal obsahovať informáciu o tom, aký test ste použili, hodnoty koeficientov, 

deskriptívne údaje a vyjadrenie sa k potvrdeniu alebo nepotvrdeniu hypotézy: 

Na základe dodržania podmienky normálnej distribúcie rozdielu medzi meraniami sme 

pre overenie hypotézy H1 použili Studentov t-test. Hypotéza H1 sa potvrdila. Zistili 

sme, že priemerný stres u študentov pred skúškou (M = 6,92; SD = 1,91) je vyšší ako 

po skúške (M = 5,85; SD = 2,05). Tento rozdiel je stredne veľký a štatisticky významný 

(M = 1,07; t(83) = 6,09; p < 0,001; d = 0,67). 

Ak by ste pre overenie hypotézy použili neparametrický Wilcoxonov test, zápis bude veľmi 

podobný, no uvediete aj medián, hodnoty prvého a tretieho kvartilu, a na miesto Cohenovho d 

uvediete poradovo-biseriálny koeficient r. 

Na základe nedodržania podmienok pre použitie parametrického testu sme pre overenie 

H1 použili neparametrický Wilcoxonov test. Hypotéza H1 sa potvrdila (W = 958,00; p 

< 0,001).  Zistili sme, že priemerný stres u študentov pred skúškou (Mdn = 7,00; Q1 = 

5,00; Q3 = 8,00; M = 6,92; SD = 1,91) je štatisticky významne vyšší ako po skúške 

(Mdn = 6,00; Q1 = 5,00; Q3 = 7,00; M = 5,85; SD = 2,05). Tento rozdiel je veľký, 

poradovo-biseriálny koeficient r = 0,85. 

Môžete si všimnúť, že pri použití oboch testov sa hypotéza potvrdila. Rozdiel je pri hodnotení 

veľkosti rozdielu – pri parametrickom teste sme konštatovali stredne veľký rozdiel, zatiaľ čo 

pri neparametrickom až veľký rozdiel. Podobne ako pri zápise výsledkov predchádzajúcich 

analýz je možné formulovať zápis výsledkov rôzne, dôležité však je, aby ste uviedli všetky 

potrebné informácie. 
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7.3 Jednofaktorová analýza rozptylu (porovnávanie 3 a viac skupín) 
Analýza rozptylu, anglicky analysis of variance, v skratke ANOVA, patrí do skupiny často 

používaných analýz v psychologických výskumoch. Pri čítaní kvantitatívnych výskumných 

štúdií ste sa už pravdepodobne niekedy s týmto názvom alebo skratkou stretli (ak teda sledujete 

aj časť popisujúcu použité štatistické analýzy). V tejto učebnici si konkrétne ukážeme takzvanú 

jednoduchú alebo jednofaktorovú analýzu rozptylu, ktorá nachádza uplatnenie aj pri 

výskumoch v rámci záverečných prác. Pre tých z vás, ktorí máte záujem dozvedieť sa viac aj 

o pokročilejších analýzach rozptylu, odporúčame učebnicu od Špajdela (2020), ktorá je 

sprievodcom týchto analýz v programe SPSS, no ak pochopíte princíp, tieto analýzy môžete 

uskutočniť aj v programe jamovi. 

Chceme porovnávať mieru kontinuálnej premennej medzi 3 alebo viacerými skupinami, prečo 

teda jednofaktorová analýza rozptylu? V úvode do bivariačnej štatistiky sme spomenuli, že 

skúmame vzťah dvoch premenných. V tomto prípade ide znovu o vzťah či súvis dvoch 

premenných – jedna z nich je kontinuálna a druhá je nominálna s tromi alebo viacerými 

kategóriami (skupinami), ktorá sa nazýva faktor, z čoho je odvodený názov jednofaktorová 

ANOVA. Jednoducho povedané, vďaka tejto analýze vieme overiť, či medzi dvomi takýmito 

premennými existuje štatisticky významný súvis alebo nie. Matematika za touto analýzou je 

zložitejšia, no tak ako v prípade porovnávania dvoch skupín, získame výsledok v podobe 

koeficientu, stupňov voľnosti a štatistickej významnosti koeficientu. Jednofaktorová analýza 

rozptylu nám však v základe neodpovie na to, či sú štatisticky významné rozdiely medzi 

všetkými skupinami, alebo medzi ktorými skupinami konkrétne sú rozdiely, odpovie nám na 

to, či existuje súvis medzi kontinuálnou a nominálnou premennou – zistíme, či sa nejakým 

spôsobom skupiny medzi sebou líšia. Pokiaľ získame štatisticky významný výsledok, vieme, 

že existuje súvis medzi premennými a môžeme pokračovať ďalej, porovnávaním jednotlivých 

skupín navzájom, pomocou takzvaných post-hoc testov. Tieto testy fungujú na princípe už 

spomínaných testov pre dve skupiny, no pri výpočte berú v úvahu fakt, že porovnávame viacero 

skupín. Toto je dôležité z hľadiska zníženia rizika falošne signifikantných výsledkov – výpočet 

štatistickej významnosti týchto testov je prísnejší.  

Hypotézy, pri ktorých využívame jednofaktorovú analýzu rozptylu, nemajú stanovený smer, 

predpokladáme v nich len súvis premenných. Uvádzame príklad možných hypotéz: 

H: Predpokladáme, že existuje štatisticky významný súvis medzi [závislá premenná] a [faktor]. 

H: Predpokladáme, že existuje štatisticky významný rozdiel medzi skupinami [faktor] v miere 

[závislá premenná]. 

Pre ilustráciu uvádzame príklad (v podstate fiktívneho) výskumu, v ktorom sme sa zaujímali 

o to, či existuje rozdiel v sebaúcte u ľudí na základe ich rodinného stavu. Určite sa tejto 

problematike venovalo mnoho štúdií, no nám stačí, že máme dáta a môžeme si ukázať analýzu. 

Naším cieľom bolo potvrdiť hypotézu: 

H1: Predpokladáme, že existuje rozdiel v miere sebaúcty jednotlivcov na základe ich rodinného 

stavu. 

Konkrétne sme sa zaujímali o slobodných ľudí, ľudí vo vzťahu, ľudí v manželskom zväzku 

a rozvedených ľudí. Do nášho výskumu sa zapojilo celkovo 503 respondentov, z toho 135 (26,8 

%) bolo slobodných, vo vzťahu bolo 165 (32,8 %) respondentov, 120 (23,9 %) bolo 

zosobášených a 83 (16,5 %) respondentov uviedlo, že sú rozvedení. 
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7.3.1 Jednofaktorová analýza rozptylu v programe jamovi 

Na začiatku sme overili normalitu distribúcie premennej sebaúcta, samostatne pre jednotlivé 

skupiny (viď. kapitola 5.5). Na základe komplexného posúdenia – s prihliadnutím na 

kontinuálnu povahu premennej, šikmosť a špicatosť, Q-Q grafy, sme usúdili, že podmienka 

normálnej distribúcie je dodržaná a rozhodli sme sa použiť parametrický test.  

V jamovi môžeme uskutočniť jednofaktorovú analýzu rozptylu prostredníctvom dvoch funkcií. 

Obe nájdeme v karte Analyses pod možnosťou ANOVA. Prvá funkcia, ktorú môžeme využiť sa 

priamo nazýva One-Way ANOVA, druhá má všeobecný názov ANOVA. Prostredníctvom druhej 

funkcie môžete spraviť aj pokročilejšie analýzy rozptylu. Výhodou prvej je jej čisté zamerania 

sa na jednofaktorovú analýzu rozptylu, no chýba v nej jednoduchá možnosť výpočtu mier 

efektu. V druhej táto možnosť je, no nemožno zvoliť koeficient pre prípad nedodržania 

podmienky rovnosti rozptylov. Najskôr začneme funkciou ANOVA, kde si overíme homogenitu 

rozptylov závislej premennej. Pokiaľ sa nám rovnosť rozptylov potvrdí, zostaneme v tejto 

funkcii. Pokiaľ nám Levenov test vyjde signifikantný, využijeme obe funkcie. 

V jamovi si v karte Analyses otvoríme možnosť ANOVA a zvolíme ANOVA. Otvorí sa nám 

okno, ktoré zobrazujeme v Obrázku 7.10. V hlavnej časti opäť vidíme okienko s premennými 

v dátovom súbore a vedľa neho dve ďalšie. Do prvého s názvom Dependent Variable vkladáme 

závislú kontinuálnu premennú (v našom prípade je to Sebaúcta). Do okienka nižšie Fixed 

Factors vkladáme premennú, ktorá vyjadruje skupiny, takzvaný faktor. Nižšie si môžeme 

zvoliť rôzne miery efektu. Pri analýze rozptylu sa využívajú najmä dve miery efektu. Stretnúť 

sa môžeme s η2 (eta na druhú, anglicky eta squared) alebo s ω2 (omega na druhú, anglicky 

omega-squared). Pri štúdiu literatúry možno narazíte aj na pojmy ako epsilon na druhú (epsilon 

squared, ε2), parciálna eta na druhú (partial eta-squared, ηp
2) či parciálna omega na druhú 

(partial omega-squared, ωp
2). Tieto sa používajú pri pokročilejších analýzach rozptylu. Pre naše 

účely nám postačí ω2, ktorej využívanie odporúča aj Field (2018). V ďalších častiach sú rôzne 

nastavenia – v tomto momente sú pre nás dôležité časti Assumption Checks a Post Hoc Tests.  
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Obrázok 7.10 Základný vzhľad funkcie ANOVA v jamovi 

Pre začatie analýzy si do okienka Dependent Variable vložíme závislú premennú, v našom 

prípade „sebaúcta“. Do okienka Fixed Factors vložíme premennú „rodstav“. Automaticky sa 

vo výsledkovej časti objavia výsledky. Tie nás v tomto momente zatiaľ nezaujímajú. Otvoríme 

si časť Assumption Checks a zvolíme Homogeneity test. Týmto sa nám vypočíta Levenov test 

rovnosti rozptylov. Sledujeme jeho výsledok. Zvýšte však pozornosť. Výsledok analýzy 

rozptylu a Levenovho testu sa vcelku podobajú, uistite sa, že sledujete správnu tabuľku. 

Výsledok z príkladu nájdete v Obrázku 7.11.  

 

Obrázok 7.11 Výsledok testu rovnosti rozptylov – Levenov test 

V našom prípade sme získali signifikanciu Levenovho testu vyššiu ako 0,05 (p = 0,061), čo 

svedčí o tom, že rozptyly v skupinách nie sú štatisticky významne odlišné, preto môžeme pre 

výpočet použiť jednofaktorovej analýzy rozptylu využiť Fisherov koeficient. Ak by bol 

výsledok Levenovho testu štatisticky významný, bolo by vhodnejšie použiť Welchov 

koeficient, ktorý však cez túto funkciu nezískame (postup ukážeme neskôr). Po zhodnotení 

Levenovho testu ho vypneme. V tomto momente si v prvej časti funkcie ANOVA zapneme 

mieru efektu ω2 a sledujeme výsledok hlavnej analýzy, ktorý nájdete v Obrázku 7.12. 
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Obrázok 7.12 Výsledok jednofaktorovej analýzy rozptylu (Fisherov koeficient F) 

V prvom rade sledujeme štatistickú významnosť. Ak je hodnota nižšia ako 0,05, konštatujeme, 

že efekt skupín je štatisticky významný. To znamená, že sme zistili štatisticky významný súvis 

týchto premenných, a teda miera kontinuálnej premennej sa líši v súvislosti so skupinami. 

V našom prípade je p < 0,001, to znamená, že sa naša hypotéza potvrdila. Štatisticky významný 

výsledok jednofaktorovej analýzy rozptylu však automaticky neznamená, že sa jednotlivé 

skupiny navzájom signifikantne líšia a nehovorí nám ani o tom, ktoré skupiny konkrétne sa 

medzi sebou líšia. Pokiaľ by bola štatistická významnosť vyššia ako 0,05, nebol by preukázaný 

štatisticky významný efekt, naša hypotéza by sa nepotvrdila a analýzu by sme v tomto kroku 

ukončili. My však máme signifikantný výsledok, a preto pokračujeme ďalej. 

Je čas zistiť, ktoré skupiny sa medzi sebou líšia. V časti Post Hoc Tests nájdeme dve okienka. 

V jednom sa nachádzajú premenné, ktoré máme nastavené ako faktory. Keďže máme len jeden 

faktor, budeme tam mať len jednu premennú, ktorú presunieme do pravého okienka. Pri 

nastavení Correction ponecháme zvolenú možnosť Tukey a zapneme tiež možnosť Cohen’s d, 

aby sme mali vypočítanú mieru efektu pri testoch rozdielov medzi jednotlivými skupinami. 

Týmto nastavením nám vo výsledkoch pribudne tabuľka, v ktorej nájdeme výsledky viacerých 

testov. Ich počet záleží od toho, koľko máme skupín. Ak máme 3 skupiny, získame 3 výsledky 

(prvá vs. druhá, prvá vs. tretia a druhá vs. tretia skupina). V našom prípade získame 6 

výsledkov. Výsledok zobrazujeme v Obrázku 7.13. 

 

Obrázok 7.13 Výsledky post-hoc testov s Tukeyho korektúrou štatistickej významnosti 

Tieto výsledky už vieme poľahky zhodnotiť, keďže ide o porovnávanie dvoch skupín. 

Sledujeme hodnoty štatistickej významnosti (ptukey) v jednotlivých riadkoch, aby sme zistili, 

ktoré skupiny sa navzájom štatisticky významne líšia. Tam, kde je hodnota nižšia ako 0,05, 

konštatujeme štatisticky významný rozdiel. Môžete si všimnúť, že v našom príklade sme zistili 

štatisticky významný rozdiel v sebaúcte medzi slobodnými a tými vo vzťahu, manželstve alebo 
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rozvedenými, no nezistili sme štatisticky významné rozdiely pri ostatných porovnávaniach. Pri 

porovnávacích testoch odporúčame začať deskriptívou, aby sme vedeli, aké sú priemery 

v jednotlivých skupinách (kto má viac, kto má menej?), no dozvieme sa to aj z hodnoty 

Cohenovho d. Ak má prvá skupina nižšiu hodnotu závislej premennej, Cohenovo d bude 

negatívne, ak vyššiu, d bude pozitívne.  

Späť o dva kroky – čo ak je výsledok Levenovho testu štatisticky významný (nie je dodržaná 

podmienka homogenity rozptylov)? Usmejeme sa (nie že by to bolo potrebné pre analýzu, ale 

že vraj to pomáha tak nejak všeobecne). Ako sme v úvode spomínali, funkcia ANOVA nevie 

vypočítať Welchov koeficient, ktorý je vhodnejší v prípade, že skupiny nemajú homogénne 

rozptyly. Už ju ale máme spustenú, takže si aspoň zapíšeme hodnotu miery efektu ω2 a spustíme 

si funkciu One-Way ANOVA (Obrázok 7.14). Postup je veľmi podobný. Závislú premennú 

vložíme do okienka Dependent Variables, premennú definujúcu skupiny vložíme do okienka 

Grouping Variable. Môžete si všimnúť, že je v základe zvolená možnosť Don’t assume equal 

(Welch’s) v časti Variances. Toto presne chceme, keďže sme zistili, že rozptyly jednotlivých 

skupín nie sú podobné. 

 

Obrázok 7.14 Základný vzhľad funkcie One-Way ANOVA v jamovi 

Po vložení premenných sledujeme výsledok (Obrázok 7.15). Opäť nás zaujíma hodnota 

štatistickej významnosti a nič sa nemení na tom, že výsledok je štatisticky významný ak je p < 

0,05. V tomto prípade nás už neprekvapí, že výsledok je štatisticky významný – zistili sme to 

pár riadkov dozadu, a teraz znovu len s použitím iného koeficientu. V prípade veľkého počtu 

respondentov v skupinách a veľmi nízkej hodnoty štatistickej významnosti sa oboma testami, 

resp. koeficientmi dostaneme k rovnakému výsledku. V rámci exaktnosti je však vhodné brať 

v úvahu potrebu rovnosti rozptylov pri Fisherovom koeficiente, a v prípade výraznej nerovnosti 

použiť Welchov koeficient – a to najmä v prípade nižšieho počtu respondentov v skupinách. 
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Obrázok 7.15 Výsledok jednofaktorovej analýzy rozptylu (Welchov koeficient F) 

Keďže sme zistili štatisticky významný efekt, tak ako predtým pokračujeme testami rozdielov 

medzi jednotlivými skupinami. V časti Post-Hoc Tests nájdeme Games-Howellov test, ktorý je 

podobný ako predtým použitý Tukeyho, no je prispôsobený pre nerovnosť rozptylov medzi 

skupinami. Zvolíme teda Games-Howell (unequal variances) a označíme aj ostatné možnosti 

v časti Statistics. Automaticky nám pribudnú výsledky testov, ktoré zobrazujeme v Obrázku 

7.16. Vďaka hviezdičkám ľahko vidíme, pri ktorých porovnávaniach boli zistené štatisticky 

významné rozdiely. Z hľadiska záveru nastala jedna zmena v porovnaní s Tukeyho post-hoc 

testom – rozdiel v sebaúcte medzi slobodnými a zosobášenými nevyšiel ako štatisticky 

významný.  

 

Obrázok 7.16 Výsledky post-hoc testov s Games-Howellovou korektúrou štatistickej 

významnosti 

Ako možno vo výsledkoch vidieť, nemáme tu informáciu o praktickej veľkosti rozdielu, teda 

Cohenovom d. Musíme si ho vypočítať inak. Ak vás baví nastavovanie filtrov v jamovi, môžete 

si nastaviť filter tak, aby ste mali vždy aktívne len dve skupiny – tie, ktoré chcete porovnávať 

a postupne počítať Welchove t-testy (kapitola 7.1.1), z ktorých si vezmete informáciu 

o Cohenovom d. Avšak pozor – vo výsledkoch zapisujeme hodnoty Games-Howellovho t-testu, 

z analýzy Welchovym t-testom si vezmeme len hodnotu Cohenovho d. A samozrejme, na konci 

nezabudnite vypnúť filter.  

Druhým spôsobom je ručný výpočet prostredníctvom nasledujúceho vzorca: 
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𝑑 =  
𝑀 𝑝𝑟𝑣𝑒𝑗 𝑠𝑘𝑢𝑝𝑖𝑛𝑦 − 𝑀 𝑑𝑟𝑢ℎ𝑒𝑗 𝑠𝑘𝑢𝑝𝑖𝑛𝑦

√(𝑆𝐷 𝑝𝑟𝑣𝑒𝑗 𝑠𝑘𝑢𝑝𝑖𝑛𝑦)2 + (𝑆𝐷 𝑑𝑟𝑢ℎ𝑒𝑗 𝑠𝑘𝑢𝑝𝑖𝑛𝑦)2

2

 

Vieme si predstaviť tú radosť na vašej tvári! Jeden spôsob lepší ako druhý! Haha... Osobne by 

sme postupovali výpočtom cez jamovi s nastavovaním filtrov, no vieme si pomôcť aj Excelom 

či iným tabuľkovým procesorom. Otvorte si nový súbor tabuľkového procesora. Aby sme sa 

nemýlili, do prvého riadku si dajte samostatne do buniek M1, SD1, M2, SD2 a d. Do druhého 

riadku budete vkladať hodnoty, ktoré v jamovi jednoducho zistíte tak, že si pri nastavení funkcie 

One-Way ANOVA zapnete v časti Additional Statistics možnosť Descriptives table. Zaujímajú 

nás priemery (M) a štandardné odchýlky (SD) v jednotlivých skupinách. Do bunky E2 

v tabuľkovom procesore vložte nasledujúci text: 

=ROUND((A2-C2)/SQRT((B2^2+D2^2)/2);3) 

Príklad, v ktorom sme zadali hodnoty M1 a SD1 zo skupiny „Slobodní“ a hodnoty M2 a SD2 

zo skupiny „Vo vzťahu“ nájdete v Obrázku 7.17. 

 

Obrázok 7.17 Nastavenie výpočtu Cohenovho d v programe Excel 

Dajte si pozor na znamienko oddeľujúce desatinné miesta. Jamovi používa bodku, no u nás 

používame čiarku. Ak máte slovenskú lokalizáciu tabuľkového procesora, použite čiarku, inak 

vám to nebude fungovať (my máme anglickú lokalizáciu, preto používame bodku, podobne ako 

v jamovi). Kto však chce, môže počítať ručne pre ten pocit nostalgie základoškolských čias. 

Naši učitelia matematiky by boli na nás hrdí! Tak či tak, máme Cohenovo d pre prvé 

porovnanie, dopočítame ďalšie a môžeme ísť interpretovať a zapisovať výsledky. 

7.3.2 Interpretácia a zápis výsledkov jednofaktorovej analýzy rozptylov 

Tak ako pri iných testoch, aj pri jednofaktorovej analýze rozptylu uvádzame hodnotu 

koeficientu, stupne voľnosti, hodnotu štatistickej významnosti a mieru efektu. Hodnoty ω2 

môžeme zhruba interpretovať týmto spôsobom (Cohen, 1988): 

• 0,010 až 0,059 – malý efekt 

• 0,060 až 0,139 – stredne veľký efekt 

• 0,140 a viac – veľký efekt 

Ak sme zistili štatisticky významný výsledok, uvádzame aj výsledky jednotlivých post-hoc 

testov, kde znovu uvádzame tieto informácie. Cohenovo d interpretujeme rovnako, ako 

v prípade porovnávania dvoch skupín (viď. 7.1.2). Zápis výsledkov je rôzny. Pokojne môžete 

všetko zapísať v riadku, no ideálnejší je zápis časti výsledkov do tabuľky. V rámci nášho 

príkladu by mohol zápis vyzerať napríklad nasledovne: 
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H1: Predpokladáme, že existuje rozdiel v miere sebaúcty jednotlivcov na základe ich rodinného 

stavu. 

Pre overenie hypotézy H1 sme použili jednofaktorovú analýzu rozptylu, keďže sa naplnili 

predpoklady pre použitie parametrického testu. Na základe dodržania rovnosti rozptylov 

v porovnávaných skupinách sme zvolili Fisherov koeficient. Hypotéza H1 sa potvrdila. Zistili 

sme, že jednotlivci sa štatitisticky významne líšia v miere sebaúcty na základe ich rodinného 

stavu (F(3; 499) = 7,36; p < 0,001). Tento efekt je malý (ω2 = 0,04). Jednotlivé skupiny sme 

porovnávali prostredníctvom Tukeyho post-hoc testu. Zistili sme, že slobodní jednotlivci 

dosahujú štatisticky význmane nižšiu mieru sebaúcty ako jednotlivci s partnerom, zosobášení 

a rozvedení jednotlivci. V prvom prípade ide o stredne veľký rozdiel, v ďalších dvoch o malý 

rozdiel. Deskriptívu premennej sebaúcta pri jednotlivých skupinách uvádzame v Tabuľke X. 

Výsledky post-hoc testov uvádzame v Tabuľke Y. 

Tabuľka X  

Deskriptíva premennej sebaúcta na základe rodinného stavu 

Skupina N M SD 

Slobodní 135 29,07 5,50 

Vo vzťahu 165 31,52 4,61 

Manželstvo 120 30,63 4,42 

Rozvedení 83 31,35 4,27 

Poznámka. 

Tabuľka Y  

Výsledok Tukeyho post-hoc testov pre premennú sebaúcta medzi skupinami podľa 

rodinného stavu 

   
Tukeyho post-hoc testy 

 
      t df p Cohenovo d 

Slobodní - Vo vzťahu -4,423 499 < ,001 -0,51 

 
- Manželstvo -2,618 499 0,045 -0,33 

 
- Rozvedení -3,431 499 0,004 -0,48 

Vo vzťahu - Manželstvo 1,541 499 0,414 0,19 

 
- Rozvedení 0,258 499 0,994 0,04 

Manželstvo - Rozvedení -1,051 499 0,719 -0,15 

Poznámka. 

  

7.3.3 Neparametrická verzia jednofaktorovej analýzy rozptylu 

V predchádzajúcej časti sme si ukázali jednofaktorovú analýzu, ktorá má ako predpoklad 

použitia normálnu distribúciu závislej premennej ako aj to, že táto závislá premenná je 



 
 

82 

kontinuálna. Čo však v prípade, že tieto podmienky nie sú naplnené? Tak ako aj pri porovnávaní 

dvoch skupín máme neparametrický Mann-Whitneyho U-test, tak aj pri jednofaktorovej 

analýze môžeme použiť Kruskal-Wallisov test, niekedy nazývaný aj neparametrická 

jednofaktorová ANOVA.  

Ak ste ešte nezačali, prípadne neukončili zber dát, odporúčame vám, aby ste rátali s tým, že 

jednotlivé skupiny musia byť dostatočne zastúpené, jednak z hľadiska analýzy dát ale aj pre 

možnosť zovšeobecnenia vašich zistení na cieľovú populáciu. Ak sa dá, snažte sa mať 

dostatočný počet respondentov/participantov – pokiaľ je predpoklad, že vaša závislá premenná 

je konceptuálne normálne distribuovaná v cieľovej populácii, je v prípade vyššieho počtu 

respondentov vyššia šanca, že dáta budú normálne distribuované. Posudzovanie normality robte 

tiež komplexne, tak ako sme uviedli v časti o testovaní normality distribúcie. V praxi sa pri 

kvantitatívnych výskumoch, ktoré majú vyšší počet respondentov (rádovo desiatky, stovky) len 

málokedy stretávame s využívaním neparametrických testov, pokiaľ ich závislá premenná nie 

je priamo ordinálna (ide však len o subjektívny pohľad). Pokiaľ sa však po uvážení rozhodnete 

pre neparametrický test, ukážeme si ako na to. Ak ste pochopili princíp toho, čo sme riešili 

doteraz, nebude to pre vás žiaden problém. 

V jamovi si otvoríme možnosť ANOVA a v časti Non-Parametric zvolíme One-Way ANOVA 

s podnadpisom Kruskal-Wallis. Otvorí sa nám pomerne jednoduché okno, v ktorom ľahko 

nastavíme analýzu (Obrázok 7.18). 

 

Obrázok 7.18 Okno pre analýzu neparametrickej analýzy rozptylu (Kruskal-Wallisov test) 

Podobne ako pred tým, do okienka Dependent Variables vložíme závislú premennú (v našom 

prípade „sebaúcta“) a do Grouping Variable vložíme premennú, ktorá definuje skupiny. 

Zvolíme si aj Effect size a v prípade, že zistíme štatisticky významný súvis premenných, 

zvolíme DSCF pairwise comparisons. Vďaka prvej možnosti získame informáciu o epsilon na 

druhú (ε2), čo je ďalšia miera efektu (podobne ako omega na druhú). Vďaka druhej možnosti 

nám bude vypočítaný Dwass-Steel-Critchlow-Flignerov post-hoc test porovnávajúci jednotlivé 

skupiny navzájom. Vzhľad výsledkov nájdete v Obrázku 7.19.  

V prvom rade sledujeme výsledok Kruskal-Wallisovho testu, v ktorom sa zameriame na 

štatistickú významnosť. Ak je p < 0,05, konštatujeme, že sa potvrdil štatisticky významný súvis 
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týchto dvoch premenných. V takomto prípade zhodnotíme aj praktickú veľkosť efektu. Delenie 

malého, stredné a veľkého efektu je rovnaké ako pri ω2, ktoré sme uviedli v predchádzajúcej 

časti. Následne môžeme spustiť post-hoc testy a sledujeme signifikanciu pri jednotlivých 

porovnávaniach. V našom prípade sme zistili štatisticky významný rozdiel medzi skupinou 

slobodných a ľudí vo vzťahu, slobodných a rozvedených. Ostatné porovnávania neboli 

štatisticky významné. Záver je teda podobný tomu, čo sme zistili pri výsledku porovnávania 

prostredníctvom Games-Howellovho testu. Na záver potrebujeme zistiť mieru efektu týchto 

rozdielov – použijeme poradovo-biseriálny koeficient r. Asi najľahšou cestou je využitie 

automatického výpočtu pri porovnávaniach dvoch skupín Mann-Whitneyho U-testom 

(nezabudnite, že pre výpočet porovnania dvoch skupín musíte nastaviť filter tak, aby ste 

pracovali len s dvomi skupinami). Pozor však, „požičiame“ si len mieru efektu, rozdiely medzi 

skupinami hodnotíme prostredníctvom post-hoc testu.  

 

 

Obrázok 7.19 Výsledok Kruskal-Wallisovho testu s post-hoc testami 

Zápis výsledkov je podobný ako pri parametrickej verzii. Pri výsledku Kruska-Wallisovho testu 

uvádzame χ2,  df. Pri deskriptívnych hodnotách sa však prevažne zameriame na medián a IQR 

prípadne hodnoty Q1 a Q3.  

H1: Predpokladáme, že existuje rozdiel v miere sebaúcty jednotlivcov na základe ich rodinného 

stavu. 

Pre overenie hypotézy H1 sme použili neparametrický Kruskal-Wallisov test, keďže sa nám  

nenaplnili podmienky pre použitie parametického testu. Hypotéza H1 sa potvrdila. Zistili sme 

štatisticky významný súvis sebaúcty s rodinným stavom (χ2 = 15,38; df = 3, p = 0,002). Tento 

efekt je malý (ε2 = 0,03). Zistili sme, že slobodní jednotlivci dosahujú štatisticky významne 

nižšiu mieru sebaúcty ako jednotlivci s partnerom a rozvedení jednotlivci. Tieto rozdiely sú 

malé. Deskriptívu premennej sebaúcta pri jednotlivých skupinách uvádzame v Tabuľke X. 

Výsledky post-hoc testov uvádzame v Tabuľke Y. 
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Tabuľka X  

Deskriptíva premennej sebaúcta na základe rodinného stavu 

Skupina N Mdn Q1 Q3 M SD 

Slobodní 135 29,00 26 34 29,07 5,50 

Vo vzťahu 165 31,00 28 35 31,52 4,61 

Manželstvo 120 30,50 28 34 30,63 4,42 

Rozvedení 83 31,00 29 34 31,35 4,27 

Poznámka. 

 

Tabuľka Y  

Výsledok post-hoc testov pre premennú sebaúcta medzi skupinami podľa rodinného stavu 

      W p Poradovo-biseriálny koeficient r 

Slobodní - Vo vzťahu 5,11 0,002 0,24 

 
- Manželstvo 2,92 0,166 0,15 

 
- Rozvedení 4,07 0,021 0,23 

Vo vzťahu - Manželstvo -2,19 0,409 0,11 

 
- Rozvedení -0,42 0,991 0,02 

Manželstvo - Rozvedení 1,50 0,714 0,09 

Poznámka. 
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8. Vzťah dvoch nezávislých nominálnych premenných 
Doposiaľ sme spoločne zvládli základy inferenčnej štatistiky, korelácie dvoch kontinuálnych či 

ordinálnych premenných a porovnávanie skupín a meraní. V tejto poslednej časti učebnice sa 

dostávame k analýze, ktorá má za účel overiť vzťah dvoch nominálnych premenných. 

V literatúre je táto analýza nazývaná ako Pearsonov chí-kvadrát test (angl. Pearson’s chi-

square test). Názov vychádza z názvu koeficientu chí na druhú χ2, ktorý je však používaný pri 

viacerých komplexnejších analýzach, takže sa s ním môžete stretnúť aj mimo skúmania vzťahu 

dvoch nominálnych premenných, čomu sa venujeme v tejto časti. 

Pre Pearsonov chí-kvadrát test je potrebné, aby boli premenné na sebe nezávislé, t.j. nejde 

o test-retest a každá kombinácia bola zastúpená aspoň 5 prípadmi. Program jamovi nám 

umožňuje aj analýzu opakovaného merania na úrovni nominálnych premenných, no tieto 

analýzy sú nad rámec tejto učebnice. Analýza funguje na princípe porovnania očakávanej 

frekvencie jednotlivých kombinácii s tým, ako sú jednotlivé kombinácie zastúpené. Čo sú to 

kombinácie a ich očakávaná frekvencia? Dve nominálne premenné, ktorých vzťah 

analyzujeme, môžu mať dve alebo viac kategórií. Uvedieme príklad, pri ktorom sú obe 

premenné dichotómne, teda majú len dve kategórie. Rozhodli sme sa skúmať, či sa muži a ženy 

líšia v tom, či obľubujú alebo neobľubujú parené buchty. Respondenti mali na výber pohlavie 

(muž/žena) a otázku „Máte rád/rada parené buchty?“ s možnosťou odpovede „Nie“ alebo 

„Áno“. Celkovo sa do výskumu zapojilo 100 respondentov. Úplnou náhodou sa do výskumu 

zapojilo presne 50 mužov a 50 žien, a ešte väčšia sranda je, že 50 ľudí uviedlo, že majú radi 

parené buchty a 50, že nie. Tieto počty sú vhodné pre najľahší možný príklad. Ak sa zamyslíte 

nad kombinatorikou, tak prídete na to, že môžeme získať 4 možné kombinácie: muž/áno, 

žena/áno, muž/nie, žena/nie. Ak by tieto dve premenné nemali žiaden súvis, očakávali by sme, 

že zastúpenie jednotlivých kombinácii bude rovnaké, teda frekvencia ich výskytu je totožná. 

Ak si spomeniete na nulovú hypotézu (ako je na ňu možné zabudnúť), výsledok frekvenčnej 

analýzy by podľa nej vyzeral takto: 

 Máte rád/rada parené buchty?  
Pohlavie Nie Áno Celkovo 

Muž 25 25 50 

Žena 25 25 50 

Celkovo 50 50 100 

  

Ako vidíte, v každej kategórii sa nachádza rovnaký počet ľudí, to znamená, že rovnaký počet 

mužov má a nemá v obľube parené buchty, rovnaký počet žien má a nemá rado parené buchty, 

rovnaký počet ľudí, ktorí obľubujú buchty sú muži a ženy a rovnaký počet ľudí, ktorí nemajú 

radi parené buchty je mužov a žien. Tento príklad je samozrejme veľmi ideálny, v oboch 

premenných sú obe kategórie zastúpené presne pol na pol. Očakávaná frekvencia výskytu 

jednotlivých kombinácii by sa líšila v prípade, že by kategórie premenných neboli rovnako 

zastúpené v dátach – nemôžeme očakávať, že bude mať 25 mužov rado buchty a 25 mužov 

nemať rado buchty, ak by sa celkovo do výskumu zapojilo len 35 mužov. V prípade, že by sa 

do výskumu zapojilo 40 mužov a 60 žien a 43 ľudí by odpovedalo Nie a 57 Áno, očakávané 

frekvencie by vyzerali takto: 
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 Máte rád/rada parené buchty?  
Pohlavie Nie Áno Celkovo 

Muž 17,20 22,80 40,00 

Žena 25,80 34,20 60,00 

Celkovo 43,00 57,00 100,00 

 

Výsledkom analýzy bude opäť koeficient (χ2), stupne voľnosti a štatistická významnosť 

koeficientu. Pri analýze sa porovnáva frekvencia jednotlivých kombinácii v našich dátach 

s očakávanou frekvenciou. Koeficient vyjadruje, ako veľmi sa odlišuje očakávanie voči realite 

v našich dátach, a na základe počtu stupňov voľnosti je vypočítaná hodnota p, ktorá nám povie, 

či je táto odlišnosť štatisticky významná alebo nie. Nadviažeme na uvedený príklad a overíme 

nasledovnú hypotézu: 

H1: Predpokladáme štatisticky významný vzťah pohlavia a obľuby parených buchiet. 

Ako sme už uviedli, do výskumu sa zapojilo 40 mužov a 60 žien. 

8.1 Chí-kvadrát test pre dve nezávislé nominálne premenné v programe jamovi 
V jamovi tento test nájdete v ponuke Frequencies, časť Contingency Tables, kde zvolíme 

Independent Samples χ2 test of association. Otvorí sa nám okno, ktoré zobrazujeme v Obrázku 

8.1. Opäť v ňom nájdeme okienko s našimi premennými a štyri okienka. Najviac nás zaujímajú 

prvé dve. Do okienka Rows vkladáme premennú, ktorá bude umiestnená ako riadky a do 

Columns zas premennú, ktorá bude tvoriť stĺpce. Na základe tohto nastavenia nám bude 

vypočítaná frekvencia jednotlivých kombinácii. To ako premenné vložíte je v podstate na vašej 

preferencii, na výsledku to v základe nič nezmení. Ďalšie dve okienka nepoužívame: Counts 

slúži pre vloženie frekvencie kombinácii v prípade, že nemáme „surové“ dáta a Layers slúži na 

pridanie premennej, na základe ktorej bude analýza rozdelená na samostatné časti (vrstvy).  

 

Obrázok 8.1 Základný vzhľad okna pre nastavenie chí-kvadrát testu dvoch nezávislých 

nominálnych premenných 

V časti Statistics nájdete viacero možných nastavení (Obrázok 8.2).  
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Obrázok 8.2 Možnosti nastavenia rôznych koeficientov 

Pri skúmaní vzťahu dvoch nominálnych premenných využívame možnosť χ2, ktorá je v základe 

nastavená. Pre niektorých z vás môže byť potrebný aj Fisherov exaktný test (Fisher’s exact 

test), ktorý sa využíva v prípade, že niektorá/niektoré kombinácie sú zastúpené menej ako 5 

prípadmi. Podmienkou použitia štandardného chí-kvadrát testu je to, aby sa každá kombinácia 

v dátach vyskytla aspoň 5-krát. V prípade nedodržania tejto podmienky je výsledok chí-kvadrát 

testu nespoľahlivý a je potrebné použiť Fisherov exaktný test, ktorý si vie poradiť aj s nízkou 

frekvenciou výskytu niektorých kategórii. Pre výpočet miery efektu, v tomto prípade sily 

vzťahu dvoch nominálnych premenných, si zvolíme možnosť Phi and Cramer’s V. Ostatné 

nastavenia a analýzy sú nad rámec tejto učebnice, no záujemcom odporúčame voľne dostupnú 

knihu o analýzach v jamovi od Navarro a Foxcroft (2019), ktorá túto problematiku rozoberá 

detailnejšie. 

V ďalšej karte Cells máme možnosť zvoliť si zobrazenie frekvencie kombinácii v našich dátach 

(Observed Counts) ale aj očakávanej frekvencie (Expected Counts). Nastavíme si tiež 

zobrazenie percent pre riadky, stĺpce a celok (označíme Row, Column a Total). V poslednej 

karte Plots môžeme nastaviť grafické znázornenie, to však nepotrebujeme. 

Pri takomto nastavení získame 3 tabuľky s hodnotami. Prvá tabuľka obsahuje informáciu o 

frekvencii zastúpenia jednotlivých kategórii. V druhej tabuľke nájdeme výsledok chí-kvadrát 

testu a v poslednej nájdeme miery efektu (Obrázok 8.3). 
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Obrázok 8.3 Výsledok chí-kvadrát testu dvoch nezávislých nominálnych premenných 

V prvej tabuľke vidíme, ako sú zastúpené jednotlivé kategórie v riadkoch Observed ako aj 

očakávané zastúpenie v prípade platnosti nulovej hypotézy v riadku Expected. V ďalších 

riadkoch môžeme sledovať frekvenciu v percentách voči danému riadku, stĺpcu a celku. 

V našom príklade je očakávané, aby 17,2 mužov odpovedalo nie, no v našich dátach je ich nižší 

počet, len 11. Naopak mužov, ktorí odpovedali áno, je viac ako je očakávané. U žien je situácia 

opačná, viac žien, ako je očakávané, odpovedalo nie a menej odpovedalo áno. Voľnejšie 

povedané, muži majú radšej parené buchty ako ženy. Aby sme však mohli potvrdiť našu 

hypotézu, musíme sledovať štatistickú významnosť chí-kvadrátu – p = 0,011, čo je menej ako 

0,05, teda súvis premenných je štatisticky významný a naša hypotéza sa potvrdila. Keďže ide 

o vzťah dvoch premenných, môžeme zhodnotiť aj jeho silu. Pri dvoch nominálnych 

premenných, ktoré majú len dve kategórie (tak ako v našom príklade), môžeme použiť phí alebo 

Cramerovo V, keďže oba koeficienty sú totožné. V prípade ak by ste pracovali s nominálnymi 

premennými, ktoré majú viac ako 2 kategórie, použite Cramerovo V. Interpretácia Cramerovho 

V sa líši v závislosti od počtu stupňov voľnosti Cramerovho V. Pozor, nemýľte si ich so 

stupňami voľnosti chí-kvadrát testu. Výpočet je ľahký, vezmeme si počet kategórii tej 
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nominálnej premennej, ktorá ich má najmenej a odpočítame 1. V našom prípade majú obe 

premenné 2 kategórie, čiže 2-1=1. Ak by ste mali dve premenné, jedna by mala 4 kategórie, 

druhá 3, výpočet by vyzeral takto 3-1=2. Interpretácia veľkosti efektu pre 1, 2, 3, 4 a 5 stupňov 

voľnosti je takáto: 

Stupne voľnosti Cramerovho V Malý efekt Stredný Veľký 

1 0,10 0,30 0,50 

2 0,07 0,21 0,35 

3 0,06 0,17 0,29 

4 0,05 0,15 0,25 

5 0,04 0,13 0,22 

 

8.2 Interpretácia a zápis výsledkov chí-kvadrát testu pre dve nezávislé nominálne 

premenné 
Ako som už uviedol, pre informáciu o tom, či existuje súvis medzi premennými, musíme 

sledovať štatistickú významnosť. V rámci interpretácie a zápisu teda uvádzame hodnotu χ2, 

stupne voľnosti a hodnotu p. Pre zhodnotenie veľkosti efektu uvádzame Cramerovo V, ktoré 

interpretujeme na základe počtu stupňov voľnosti Cramerovho V. Pre úplnosť výsledkov je 

vhodné uviesť tabuľku, v ktorej uvedieme početnosť kombinácii v našom výskume ako aj 

očakávanú početnosť. V rámci interpretácie nezabudnite aj na popísanie informácii z tejto 

tabuľky. Príklad: 

H1: Predpokladáme štatisticky významný vzťah pohlavia a obľuby parených buchiet. 

Pre overenie hypotézy H1 sme použili Pearsonov chí-kvadrát test. Hypotéza H1 sa potvrdila, 

zistili sme štatisticky významný vzťah pohlavia a obľuby parených buchiet (χ2
(1) = 6,53; p = 

0,011). Na základe Cramerovho V hodnotíme tento vzťah ako slabý (V = 0,26). Na základe 

posúdenia očakávaných a zistených frekvencií sme zistili, že muži vo všeobecnosti viac 

preferujú parené buchty v porovnaní so ženami. Očakávanú a zistenú frekvenciu jednotlivých 

kombinácií uvádzame v Tabuľke 1. 

Tabuľka 1  

Očakávaná a zistená frekvencia kombinácií pohlavia a obľuby parených buchiet 
  Máte rád/rada parené buchty?  

Pohlavie Frekvencia Nie Áno Celkovo 

Muž Zistená 11 29 40 
 Očakávaná 17,20 22,80 40 

Žena Zistená 32 28 60 
 Očakávaná 25,80 34,20 60 

Celkovo Zistená 43 57 100 

  Očakávaná 43 57 100 

 Poznámka. 

Hypotéza sa potvrdila, výsledok sme zapísali. Pri tomto teste však stále ide o celkový vzťah 

premenných. Na základe zistenej a očakávanej frekvencie vidíme rozdiel, ktorý vieme 

interpretovať, no ak chceme hovoriť o štatistickej významnosti rozdielu medzi očakávaním 

a zistením, musíme si vypočítať Pearsonov reziduál, čiže štandardizovaný rozdiel medzi týmito 

frekvenciami. Vypočítame ho pomerne jednoducho: 
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𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑜𝑣 𝑟𝑒𝑧𝑖𝑑𝑢á𝑙 =  
𝑧𝑖𝑠𝑡𝑒𝑛á 𝑓𝑟𝑒𝑘𝑣𝑒𝑛𝑐𝑖𝑎 − 𝑜č𝑎𝑘á𝑣𝑎𝑛á 𝑓𝑟𝑒𝑘𝑣𝑒𝑛𝑐𝑖𝑎

√𝑜č𝑎𝑘á𝑣𝑎𝑛á 𝑓𝑟𝑒𝑘𝑣𝑒𝑛𝑐𝑖𝑎
 

Ak by sme chceli zistiť, či sa štatisticky významne líši zistená a očakávaná frekvencia mužov, 

ktorí nemajú radi buchty, vzorec by vyzeral takto: 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑜𝑣 𝑟𝑒𝑧𝑖𝑑𝑢á𝑙 𝑝𝑟𝑒 𝑚𝑢ž/𝑛𝑖𝑒 =  
11 − 17,2

√17,2
≅  −1,49 

Ak je v absolútnej hodnote Pearsonov reziduál väčší ako 1,96, ide o štatisticky významný 

rozdiel pri p < 0,05, ak je väčší ako 2,58 tak p < 0,01, a ak je väčší ako 3,29 tak p < 0,001. 

V našom prípade rozdiel medzi očakávanou a zistenou frekvenciou nie je tak veľký, aby bol 

štatisticky významný. Takýto záver vyvodíme aj pri ostatných kombináciách: muž/áno (1,30), 

žena/nie (1,22), žena/áno (-1,06). Hoci je teda celkový vzťah štatisticky významný, nezistili 

sme štatisticky významné rozdiely v očakávanej a zistenej frekvencii pri jednotlivých 

kombináciách. Nemusíme smútiť, celkový záver – významný vzťah dvoch premenných platí, 

no tieto detailnejšie zistenia spolu so slabou silou vzťahu musíme mať na mysli pri diskusii 

zistení. 

V prípade, že je súvis medzi premennými štatisticky významný, nemusíme Pearsonove 

reziduály počítať ručne, ale v časti Post Hoc Tests zvolíme Pearson residuals a Jamovi nám ich 

vypočíta. Pre lepšiu prehľadnosť dokonca zvýrazní reziduály, ktoré sú štatisticky významné pri 

približne p < 0,05 (ak chcete, môžete si hladinu upraviť na základe hodnôt uvedených vyššie). 

Výsledok zobrazujeme na Obrázku 8.4. 

 

Obrázok 8.4 Výsledok Pearsonových post-hoc testov v jednotlivých kategóriách 
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9. Záverečné odporúčania 
Na záver, máme niekoľko (podľa nás) dôležitých postrehov, ktoré sme nazbierali za tých pár 

rokov vlastného výskumu a konzultácií so študentmi. 

Čaro výskumu je pred zberom dát – dajte si záležať na príprave toho, čo idete zbierať. Váš 

výskum je len tak dobrý, ako dobré sú jeho časti – teoretický koncept, opodstatnenie 

predpokladov, metodológia a použité psychodiagnostické metodiky. Skúmať sa dá všeličo, no 

dôležité je, aby to dávalo zmysel (malo koncept) a výskum bol vhodne spravený. S odstupom 

času a najmä po zbere dát či pri diskusii výsledkov vám napadne zopár vecí, ktoré ste mohli 

spraviť inak, čo je prirodzené. Ak však zabudnete na niečo, čo je esenciálne, už to ľahko (alebo 

skôr vôbec) nenapravíte. Vopred majte pripravené a pevne stanovené ciele, výskumné 

hypotézy, metodiky ako aj to, ako budete dáta analyzovať. Vďaka tomu možno odhalíte 

nedostatky a napadnú vám veci, ktoré môžete vo vašom výskume zlepšiť. 

Výskumný výber a cieľová populácia – váš výskum má priniesť zistenia pre určitú širšie alebo 

užšie vymedzenú cieľovú populáciu (napr. všeobecná populácia dospelých verzus členovia 

záchranárskych jednotiek). Pri užšie vymedzenej populácii, povedzme záchranároch, nebudete 

zbierať dáta u pekárov – pomerne jasná chyba. No dajte si záležať na tom, aby ste pri zbere dát 

zachytili cieľovú populáciu, čo najviac sa dá. Pri všeobecnej populácii dospelých je potrebné 

osloviť a prizvať do výskumu rôznych ľudí z danej populácie. Najčastejším príkladom je, že 

hovoríme o širokej populácii na základe vysokoškolských študentov – pre výskum možno 

najprístupnejšej skupine ľudí. Takáto chyba je vytýkaná aj výskumom publikovaným v rôznych 

kvalitných vedeckých časopisoch. Dôležité je aj to, aby ste pri interpretácii a diskusii výsledkov 

zohľadnili, aký efekt na zovšeobecnenie zistení môžu mať charakteristiky vášho výskumného 

výberu. 

Nepotvrdené predpoklady – možno sa vám stane, že niektoré predpoklady, teda vami stanovené 

hypotézy sa nepotvrdia. Dôkladne skontrolujte, či ste z technického hľadiska spravili všetko 

správne a ak áno, tak sa s tým musíte vysporiadať. Nebojte sa toho. V diskusii máte možnosť 

uviesť možné dôvody, prečo sa vám hypotéza nepotvrdila. Aj nepotvrdená hypotéza je zistenie! 

Najmä sa v návale paniky nedopustite hrubého prešľapu – vytvárania nových „predpokladov“. 

Ak ste šli do zberu dát so štyrmi hypotézami, skončite so štyrmi hypotézami. Nepridávajte 

hypotézy len kvôli tomu, aby sa vám niečo potvrdilo. Vaša záverečná práca nie je 

o potvrdených hypotézach, je to dôkaz o vašej schopnosti nazbierať a syntetizovať poznatky, 

formulovať výskumný problém, ciele, zvoliť správny metodologický postup, analyzovať dáta 

a diskutovať zistenia. Nikde nie je spomenuté niečo ako „minimálny počet potvrdených 

hypotéz“. Samozrejme, ak ste pri práci s dátami narazili na niečo zaujímavé, prípadne vám 

niečo napadlo, čo by stálo za preverenie, môžete to uviesť, no jasne vymedzte, že sú to 

doplňujúce zistenia nad rámec hypotéz. 

Na číslach záleží – pri korelačnej analýze sme uviedli, aby ste si nemýlili signifikanciu 

s korelačným koeficientom, čo platí aj pri ostatných analýzach. Dajte si čas a uistite sa, že 

pozeráte na správne hodnoty. Stáva sa to na seminároch, skúške a nanešťastie aj v záverečných 

prácach. Študent si pomýli napr. hodnotu p s hodnotou r, a tak štatisticky nevýznamný, silou 

prakticky nulový vzťah (r = 0,04; p = 0,532) sa stane štatisticky významným, silným 

vzťahom...  

Formálny zápis nie je „formalitka“ – v učebnici sme uviedli príklady zápisu výsledkov. 

Samozrejme je to len jedna z možností zápisu, konkrétna formulácia sa môže líšiť, no dôležité 
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je, aby váš zápis obsahoval všetky dôležité číselné hodnoty ako aj popis toho, čo tie hodnoty 

znamenajú. „Hypotéza H1 sa potvrdila. r = 0,35 a p < 0,001“ nestačí. 

Nebojte sa pokročilejších analýz – odporúčanie sa týka najmä študentov magisterského stupňa 

štúdia. Táto učebnica je základom, vďaka ktorému snáď naberiete istotu v základoch a zároveň 

odvahu pokračovať ďalej. Pri diplomových prácach sa častejšie riešia komplexnejšie výskumné 

problémy, ktoré možno analyzovať komplexnejšími analýzami. Možnože vám názov 

„hierarchická lineárna regresia“ alebo „analýza kovariancie“ znie desivo, no ak ste pri štúdiu 

literatúry narazili na analýzu, ktorú by ste mohli využiť, „googlite“ – na internete určite nájdete 

množstvo zaujímavých návodov, no nebojte sa spýtať školiteľa alebo vyučujúceho.  
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Záver 
Kvantitatívny výskum je úzko spätý s analýzou dát, ktorá je vďaka pokroku v informačných 

technológiách čoraz dostupnejšia a užívateľsky priateľskejšia. Jedným z príkladov je program 

jamovi, ktorý je zadarmo dostupný pre kohokoľvek a zároveň ponúka širokú paletu 

štatistických analýz. Táto učebnica je určená pre úplných začiatočníkov v oblasti analýzy 

psychologických dát a práce v programe jamovi. Čitateľovi ponúka základný prehľad toho 

dôležitého pri analýze psychologických dát. Využitie nájde pri vyhodnocovaní dát pri 

kvantitatívnom výskume v rámci záverečných prác, no dúfame, že motivuje čitateľov 

k ďalšiemu rozširovaniu obzorov 

Prajeme vám veľa príjemných chvíľ v programe jamovi, pri analýze dát a interpretácii 

výsledkov, aj keď vieme, že o tom s radosťou v budúcnosti nebudete hovoriť vašim vnúčatám...      
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